You are here: MIMS > EPrints
MIMS EPrints

2007.234: Lie powers and Witt vectors

2007.234: R. M. Bryant and Marianne Johnson (2008) Lie powers and Witt vectors. Journal of Algebraic Combinatorics. ISSN 0925-9899

Full text available as:

PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
190 Kb

DOI: 10.1007/s10801-007-0117-9

Abstract

In the study of Lie powers of a module $V$ in prime characteristic $p$, a basic role is played by certain modules $B_n$ introduced by Bryant and Schocker. The isomorphism types of the $B_n$ are not fully understood, but these modules fall into infinite families $\{ B_k, B_{pk}, B_{p^2 k}, \dots \}$, one family $B(k)$ for each positive integer $k$ not divisible by $p$, and there is a recursive formula for the modules within $B(k)$. Here we use combinatorial methods and Witt vectors to show that each module in $B(k)$ is isomorphic to a direct sum of tensor products of direct summands of the $k$th tensor power $V^{\otimes k}$.

Item Type:Article
Additional Information:

The original publication is available at www.springerlink.com/

Uncontrolled Keywords:Free Lie algebra, Lie power, Tensor power, Witt vector
Subjects:MSC 2000 > 11 Number theory
MSC 2000 > 17 Nonassociative rings and algebras
MSC 2000 > 20 Group theory and generalizations
MIMS number:2007.234
Deposited By:Miss Marianne Johnson
Deposited On:30 December 2007

Download Statistics: last 4 weeks
Repository Staff Only: edit this item