You are here: MIMS > EPrints
MIMS EPrints

2009.68: Perfect generalized characters inducing the Alperin-McKay conjecture

2009.68: Charles W. Eaton (2008) Perfect generalized characters inducing the Alperin-McKay conjecture. Journal of Algebra, 320 (6). pp. 2301-2327. ISSN 0021-8693

Full text available as:

PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
259 Kb

DOI: 10.1016/j.jalgebra.2008.05.031

Abstract

It is well known that the perfect isometries predicted in Broue's conjecture do not always exist when the defect groups are non-abelian, even when the blocks have equivalent Brauer categories. We consider perfect generalized characters which induce bijections between the sets of irreducible characters of height zero of a block and of its Brauer correspondent in the normalizer of a defect group. In this way the perfect isometries predicted in Broue's conjecture for blocks with abelian defect groups are generalized. Whilst such generalized characters do not exist in general, we show that they do exist when the defect groups are non-abelian trivial intersection subgroups of order $p^3$, as well as for $^2B_2(q)$ for $q$ a power of two and $PSU_3(q)$ for all $q$. Further, we show that these blocks satisfy a generalized version of an isotypy.

Item Type:Article
Subjects:MSC 2000 > 20 Group theory and generalizations
MIMS number:2009.68
Deposited By:Dr Charles Eaton
Deposited On:10 October 2009

Download Statistics: last 4 weeks
Repository Staff Only: edit this item