You are here: MIMS > EPrints
MIMS EPrints

2009.73: Local entropy averages and projections of fractal measures

2009.73: Michael Hochman and Pablo Shmerkin (2009) Local entropy averages and projections of fractal measures.

Full text available as:

PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
669 Kb

Abstract

We show that for families of measures on Euclidean space which satisfy an ergodic-theoretic form of "self-similarity" under the operation of re-scaling, the dimension of linear images of the measure behaves in a semi-continuous way. We apply this to prove the following conjecture of Furstenberg: Let m,n be integers which are not powers of the same integer, and let X,Y be closed subsets of the unit interval which are invariant, respectively, under times-m mod 1 and times-n mod 1. Then, for any non-zero t: dim(X+tY)=min{1,dim(X)+dim(Y)}. A similar result holds for invariant measures, and gives a simple proof of the Rudolph-Johnson theorem. Our methods also apply to many other classes of conformal fractals and measures. As another application, we extend and unify Results of Peres, Shmerkin and Nazarov, and of Moreira, concerning projections of products self-similar measures and Gibbs measures on regular Cantor sets. We show that under natural irreducibility assumptions on the maps in the IFS, the image measure has the maximal possible dimension under any linear projection other than the coordinate projections. We also present applications to Bernoulli convolutions and to the images of fractal measures under differentiable maps.

Item Type:MIMS Preprint
Uncontrolled Keywords:CICADA, Hausdorff dimension, convolutions, orthogonal projections, invariant measures
Subjects:MSC 2000 > 28 Measure and integration
MSC 2000 > 37 Dynamical systems and ergodic theory
MIMS number:2009.73
Deposited By:Mr Pablo Shmerkin
Deposited On:14 October 2009

Download Statistics: last 4 weeks
Repository Staff Only: edit this item