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PRECONDITIONING STOCHASTIC GALERKIN SADDLE POINT SYSTEMS

CATHERINE E. POWELL † AND ELISABETH ULLMANN ‡

Abstract. Mixed finite element discretizations of deterministic second-order elliptic partial differential equations
(PDEs) lead to saddle point systems for which the study of iterative solvers and preconditioners is mature. Galerkin
approximation of solutions of stochastic second-order elliptic PDEs, which couple standard mixed finite element dis-
cretizations in physical space with global polynomial approximation on a probability space, also give rise to linear
systems with familiar saddle point structure. For stochastically nonlinear problems, the solution of such systems
presents a serious computational challenge. The blocks are sums of Kronecker products of pairs of matrices associated
with two distinct discretizations and the systems are large, reflecting the curse of dimensionality inherent in most
stochastic approximation schemes. Moreover, for the problems considered herein, the leading blocks of the saddle
point matrices are block-dense and the cost of a matrix vector product is non-trivial.

We implement a stochastic Galerkin discretization for the steady-state diffusion problem written as a mixed first-
order system. The diffusion coefficient is assumed to be a lognormal random field, approximated via a nonlinear
function of a finite number of unbounded random parameters. We study the resulting saddle point systems and
investigate the efficiency of block-diagonal preconditioners of Schur complement and augmented type, for use with
minres. By introducing so-called Kronecker product preconditioners we improve the robustness of cheap, mean-based
preconditioners with respect to the statistical properties of the stochastically nonlinear diffusion coefficients.

Key words. saddle point matrices, preconditioning, Kronecker product, multigrid, stochastic Galerkin finite
element method, lognormal random field, H(div) approximation
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1. Introduction. We are interested in the design of efficient and robust preconditioners for a
class of linear systems of equations with symmetric and indefinite coefficient matrices of the form

Ĉ :=

[
Â B̂>

B̂ 0

]
(1.1)

where Â is symmetric and positive definite and B̂ has full row rank. Such systems arise, notably, in
the solution of PDEs via mixed finite element methods (e.g. see [10], [26], [16]). Today there is a
large community of researchers dedicated to the task of solving Ĉx = b and the spectral properties
of Ĉ, appropriate iterative solvers and preconditioners have been well studied, [6]. The appearance
of the zero matrix in the (2,2) block and the fact that Â is positive definite mean that Ĉ falls into a
relatively easy class of saddle point matrices, for which the minimal residual method (minres, [25])
is an optimal iterative solver. Convergence can be accelerated using symmetric and positive definite
preconditioners, of which there are two well-known types.

Writing Ŝ = B̂Â−1B̂>, the classical Schur complement preconditioner is

P̂S :=

[
Â 0
0 Ŝ

]
. (1.2)

P̂−1
S Ĉ has only three distinct eigenvalues [24, Remark 1] and so (in exact arithmetic) preconditioned

minres converges in at most three iterations. Obtaining a practical implementation of this precon-
ditioner depends on our ability to approximate the actions of Â−1 and Ŝ−1 on vectors, cheaply.

Alternatively, so-called augmented preconditioners of the form,
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P̂A :=

[
Â + γ−1B̂>Ŵ−1B̂ 0

0 γŴ

]
(1.3)

which have their roots in the augmented Lagrangian method, are being adapted with success in many
applications (e.g. see [16], [34]). Choosing the parameter γ and the symmetric positive definite weight
matrix Ŵ appropriately, is key. A smart choice of γ can force the eigenvalues of P̂−1

A Ĉ to cluster at
±1, forcing minres to converge rapidly. For ease of solution, Ŵ is typically chosen as an identity or
mass matrix. For PDE problems, however, there is often an underlying bilinear form from the weak
formulation that drives the choice of Ŵ as Â + B̂>Ŵ−1B̂ is the natural matrix representation of a
particular PDE operator. Obtaining a practical version of P̂A depends on the availability of cheap
algorithms to approximate the action of (Â + γ−1B̂>Ŵ−1B̂)−1 for the chosen Ŵ .

In this work, we are concerned specifically with saddle point matrices of the form

Ĉ :=




G0 ⊗A0 +
∑N

n=1 Gn ⊗An G0 ⊗B>

G0 ⊗B 0


 (1.4)

where ⊗ denotes the Kronecker product. Matrices with this structure arise from stochastic Galerkin
(SG) mixed finite element formulations of two-field PDE problems with random coefficients. Exam-
ples include the Darcy flow problem with random permeability coefficients and the Stokes problem
with random viscosity. A0, A1, . . . , AN and B are finite element matrices associated with the physi-
cal domain. They are sparse and usually ill-conditioned with respect to the finite element mesh size
and, here, the statistical properties of the PDE coefficients. The matrices G0, G1, . . . , GN represent
multiplication operators on a probability space associated with the random PDE coefficients. Their
structural and spectral properties (see [12], [27], [30]) are governed by our choice of discretization
on the probability space. We assume that the (1,1) block in (1.4) is positive definite and so linear
systems with this Ĉ can be solved via preconditioned minres with the block-diagonal precondition-
ers described above. However, there are additional computational challenges. Due to the Kronecker
product structure, the dimension of the system can be huge even if the physical domain is only two-
dimensional. If the matrices G0, G1, . . . , GN are not sparse and/or if N is large, then the cost of a
matrix vector product is non-trivial.

In [11] and [15] an SG mixed formulation of the steady-state diffusion problem is studied and
block-diagonal preconditioners for the resulting saddle point matrices are proposed. In those works,
however, the diffusion coefficient is a linear function of M bounded random parameters, yielding
N = M and well-conditioned, sparse matrices G0, G1, . . . , GM in (1.4). Here, we extend our earlier
work to a new, more challenging model problem. We consider again the steady-state diffusion problem
but now the diffusion coefficient is a nonlinear function of M unbounded random parameters. This
has serious consequences for the linear algebra and new preconditioners are required.

1.1. Outline. In Section 2 we describe the model problem and an appropriate SG mixed finite
element discretization. Properties of the resulting saddle point matrices are discussed in Section 3.
In Section 4 we study a Schur complement preconditioner from [11] and in Section 5 we revisit a
preconditioner from [15], which is equivalent to P̂A in (1.3) with γ = 1 and a certain Ŵ . We make
essential improvements to both preconditioners for the new model problem by combining them with
best Kronecker product approximation (see [33]). Practical preconditioners are derived by exploiting
appropriate multigrid methods, and numerical results are presented in Section 6.

2. Stochastic steady-state diffusion problem. In many applications, there is a growing
need to solve PDEs with inputs that are subject to uncertainty. Specifically, we mean problems
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where the uncertainty stems from lack of knowledge about the data and one or more inputs to the
PDE(s) of interest cannot be stated as functions of x ∈ D where D ⊂ Rd is the physical domain.
Suppose T is a coefficient function that is not known at every x ∈ D but whose values at two distinct
spatial locations are connected via a prescribed covariance function. We can model T as a random
field, a real-valued function T (x , ω) : D × Ω → R where ω ∈ Ω is an abstract label for a realization
of T. In deterministic models we prescribe T = T (x ) for every x ∈ D but here, T = T (x , ω) and we
prescribe a statistical distribution of T (x , ·) for every x ∈ D and a covariance function CT (x ,y).

The steady-state diffusion problem with random diffusion coefficient T can be stated as: find a
random field u(x , ω) that solves, P -almost surely,

−∇·T (x , ω)∇u(x , ω) = f(x ) in D × Ω,
u(x , ω) = g(x ) on ∂DD × Ω,

n · T∇u(x , ω) = 0 on ∂DN × Ω.
(2.1)

Formally, P is the probability measure associated with a probability space (Ω,F , P ). To solve (2.1),
we first approximate T (x, ω) by a function TM (x, ξ) of an appropriate set of M independent random
parameters ξ = [ξ1, . . . , ξM ]> taking values in Γ ⊆ RM (e.g. see [9]). Crucially, this converts the
stochastic PDE (2.1) to an (M + d)-dimensional deterministic one and conventional discretization
schemes can be applied. We then seek a random field u(x , ξ) that solves, with probability one,

−∇·TM (x , ξ)∇u(x , ξ) = f(x ) in D × Γ,
u(x , ξ) = g(x ) on ∂DD × Γ,

n · T∇u(x , ξ) = 0 on ∂DN × Γ.
(2.2)

The well-posedness of (2.1)–(2.2), primal variational formulations, and approximation schemes based
on finite element spatial discretizations have been widely studied (see [9], [4], [5], [3], [13], [23], [35]).
Stochastic Galerkin approximation, specifically, has been studied in [4] and [9] and solvers for the
resulting symmetric positive definite linear systems have been studied in [27], [32] and [30].

2.1. Mixed formulation. We are concerned with the more challenging problem of finding a
pair of random fields q = q(x , ω) and u = u(x , ω) such that, P -almost surely,

T−1(x , ω)q(x , ω) +∇u(x , ω) = 0
∇· q(x , ω) = f(x ) in D × Ω,

u(x , ω) = g(x ) on ∂DD × Ω,
n · q(x , ω) = 0 on ∂DN × Ω.

(2.3)

We assume that D ⊂ R2 is a convex bounded open set and 0 < Tmin ≤ T (x , ω) ≤ Tmax a.e. in D×Ω.
Given an approximation T−1

M (x , ξ) : D × Γ → R to T−1 in terms of a finite set of M independent
random parameters we solve a corresponding (M + 2)-dimensional boundary value problem

T−1
M (x , ξ)q(x , ξ) +∇u(x , ξ) = 0

∇· q(x , ξ) = f(x ) in D × Γ,
u(x , ξ) = g(x ) on ∂DD × Γ,

n · q(x , ξ) = 0 on ∂DN × Γ.

(2.4)

The associated weak problem of finding q(x , ξ) ∈ V and u(x , ξ) ∈ W satisfying

〈a(q , r)〉+ 〈b(r , u)〉 = 〈−(g,n · r)∂DD 〉 ∀ r ∈ V, (2.5)
〈b(q , v)〉 = 〈−(f, v)〉 ∀ v ∈ W, (2.6)

where a(·, ·) : H(div; D)×H(div; D) → R and b(·, ·) : H(div; D)× L2(D) → R are defined via

a(u , v) =
∫

D

T−1
M u · v dx , b(v , p) = −

∫

D

p∇ · v dx ,
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is well-posed in V = L2
ρ(Γ, H0(div; D)) and W = L2

ρ(Γ, L2(D)). Here 〈·〉 =
∫
Γ

ρ(ξ) · dξ denotes the
expectation operator and ρ(ξ) is the joint probability density function of ξ, which is known once a
distribution has been chosen for the independent parameters ξm. For any Hilbert space X with norm
‖ · ‖X , L2

ρ(Γ, X) =
{
v : Γ → X | 〈‖ v ‖2X

〉
< ∞}

.
Introducing finite-dimensional spaces Vh ⊂ H0(div; D),Wh ⊂ L2(D), Sd ⊂ L2

ρ(Γ) leads to the
stochastic Galerkin saddle point problem: find qhd(x , ξ) ∈ Vh⊗Sd and uhd(x , ξ) ∈ Wh⊗Sd satisfying

〈a(qhd, rhd)〉+ 〈b(rhd, uhd)〉 = 〈−(g,n · rhd)∂DD
〉 ∀ rhd ∈ Vh ⊗ Sd (2.7)

〈b(qhd, vhd)〉 = 〈−(f, vhd)〉 ∀ vhd ∈ Wh ⊗ Sd. (2.8)

If we introduce bases Vh = span{ϕj(x )}Nq

j=1, Wh = span{φj(x )}Nu
j=1, and Sd = span{ψ`(ξ)}Nξ

`=1 then

qhd(x , ξ) =
Nξ∑

`=1

Nq∑

j=1

qj,` ϕj(x )ψ`(ξ), uhd(x , ξ) =
Nξ∑

`=1

Nu∑

j=1

uj,` φj(x )ψ`(ξ). (2.9)

We will use Vh = RT0(D) and Wh = P0(D), the lowest-order Raviart-Thomas approximation [29]
based on a partition of the physical domain D into triangles. For Sd we will use M -variate polynomials
of total degree d in ξ = [ξ1, . . . , ξM ]>. For these specific choices, the well-posedness of (2.7)–(2.8) was
established in [15] under the assumption that

0 < TM,min ≤ TM (x , ω) ≤ TM,max a.e. in D × Γ. (2.10)

However, any deterministic inf-sup stable pair Vh-Wh used in conjunction with any finite-dimensional
subspace of L2

ρ(Γ) leads to an inf-sup stable approximation in a certain pair of norms; see Section 5.

2.2. Lognormal diffusion coefficient. The question remains as to what is a suitable approx-
imation T−1

M (x , ξ)? The boundary value problem (2.3) provides a model for groundwater flow. In
that scenario, u and q denote the pressure and velocity field, respectively, and T is the permeabil-
ity coefficient. In [11] and [15], T−1 is approximated directly by an M -term Karhunen-Loève (KL)
expansion [21] which is a linear function of M uncorrelated random variables ξm. In flow models,
however, T often follows a lognormal distribution (e.g. see [14]) and cannot be approximated well
using a linear combination of random parameters.

Here, we assume T = exp(G) where G = G(x , ω) is a correlated Gaussian random field, with
given mean 〈G(x , ω)〉 = µG(x ) and covariance function

CG(x ,y) = 〈(G(x , ω)− µG(x )) (G(y , ω)− µG(y))〉 = σ2
GVG(x ,y). (2.11)

Our starting point is a Karhunen-Loève expansion [21] for G,

G(x , ω) = µG + σG

∞∑
m=1

√
λmkm(x )ξm(ω), (2.12)

where µG and σG are the (spatially) constant mean and standard deviation of G, (λm, km)∞m=1 are
the eigenpairs of the integral operator associated with VG(x ,y) in (2.11) and (ξ1, ξ2, . . . , ξm, . . . ) are
uncorrelated, independent standard Gaussian random variables. The eigenvalues are assumed to be
listed in descending order so that (λm, km)M

m=1 denote the eigenpairs corresponding to the M largest
eigenvalues. Truncating after M terms gives GM (x , ξ) : D×Γ → R where ξ := [ξ1, ξ2, . . . , ξM ]> and
Γ = RM . Finally, we choose T−1

M (x , ξ) as the truncated Wiener polynomial chaos expansion [19] of
T−1 containing only polynomials in ξ1, ξ2, . . . , ξM which leads to (2.4).

Definition 2.1 (M -dimensional multi-indices). An M-dimensional multi-index α ∈ NM
0 is a se-

quence of non-negative integers α = (α1, α2, . . . , αM ). We define |α| := ∑M
m=1 αm, α! :=

∏M
m=1 αm!,

and write I = NM
0 . For a specified M ∈ N and d ∈ N0, denote

Id := {α ∈ I , |α| ≤ d}, I +
d := {α ∈ Id, |α| > 0}. (2.13)
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There is a bijection ι : {1, . . . , J} 7→ Id, J = |Id| =
(
M+d

M

)
, that assigns a unique integer j ∈

{1, . . . , J} to each multi-index ι(j) ∈ Id and vice versa.
Consider, now, the set of multivariate polynomials

ψα(ξ) :=
M∏

m=1

ψ(m)
αm

(ξm), α ∈ I , (2.14)

where ψ
(m)
k denotes the univariate Hermite polynomial of exact degree k ∈ N0. Such polynomials are

orthonormal with respect to the Gaussian probability density function (pdf)

ρm(ξm) = (
√

2π)−1 exp(−ξ2
m/2), m ∈ N. (2.15)

Hence 〈ψα(ξ)ψβ(ξ)〉 = δα,β and the polynomials in (2.14) are also orthonormal. Collectively, they
form an M -dimensional polynomial chaos and provide a useful basis for L2

ρ(Γ). Assuming T−1
M ∈ L2

ρ(Γ)
for any x ∈ D, we can then write

T−1
M (x , ξ) =

∑

α∈I

tα(x )ψα(ξ), tα(x ) =
〈
T−1

M (x , ξ)ψα(ξ)
〉
. (2.16)

We can also use a subset of the polynomials in (2.14) to provide a basis for Sd. We choose

Sd := span{ψα(ξ) : α ∈ Id},
which has dimension Nξ =

(
M+d

d

)
= (M+d)!

M !d! .
Noting that T−1(x , ξ) = exp(−G(x , ξ)) and exploiting the orthogonality properties of the poly-

nomial chaos functions yields explicit formulae for the spatial coefficient functions in (2.16) in terms
of the known KL expansion functions for G from (2.12). From [22, Chapter I, Theorem 3.1]) it follows

t0(x ) =
〈
T−1

〉
= exp(−µG + σ2

G/2), α ∈ I , |α| = 0, (2.17)

tα(x ) =
〈
T−1

〉 (−1)|α|σ|α|G√
α!

M∏
m=1

(√
λmkm(x )

)αm

, α ∈ I , |α| > 0. (2.18)

3. Stochastic Galerkin equations. Using the expansion (2.16), the SG mixed finite element
approximation (2.7)–(2.8) leads to the set of Galerkin equations,

[
Â B̂>

B̂ 0

] [
q
u

]
=

[
g
f

]
(3.1)

where q and u contain the coefficients in the expansions of uhd and qhd in (2.9) and

Â = G0 ⊗A0 +
∑

α∈I +
2d

Gα ⊗Aα, B̂ = G0 ⊗B. (3.2)

We have separated out the symmetric, positive definite term G0 ⊗ A0 which, together with B̂,
represents the discretized mean problem, i.e., the deterministic problem obtained by replacing the
random field T−1 with

〈
T−1

〉
. The right Kronecker product factors in (3.2) are finite element matrices

that can be produced using standard finite element code. We have

A0 ∈ RNq×Nq , [A0]i,k = (t0ϕk,ϕi), i, k = 1, . . . , Nq , (3.3a)

Aα ∈ RNq×Nq , [Aα]i,k = (tαϕk,ϕi), i, k = 1, . . . , Nq , α ∈ I +
2d, (3.3b)

B ∈ RNu×Nq , [B]i,k = −(∇·ϕi, φk), i = 1, . . . , Nu, k = 1, . . . , Nq , (3.3c)
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where (·, ·) denotes the L2(D) inner-product. A0 and Aα have the structure of mass matrices, each
one weighted by a different coefficient function from (2.18), and B is the matrix representation of
the divergence operator. Although A0 is positive definite (and so is Â if (2.10) holds), the coefficient
functions tα are not strictly positive functions and so the matrices Aα are in general indefinite. The
left Kronecker product factors in (3.4) are defined in terms of the basis functions for Sd,

G0 ∈ RNξ×Nξ , [G0]j,` =
〈
ψι(`)ψι(j)

〉
, j, ` = 1, . . . , Nξ, (3.4a)

Gα ∈ RNξ×Nξ , [Gα]j,` =
〈
ψαψι(`)ψι(j)

〉
, j, ` = 1, . . . , Nξ, α ∈ I +

2d. (3.4b)

There is actually a matrix Gα in (3.2) for each polynomial ψα in the expansion (2.16). However, it
can be shown (see [23]) that Gα is the zero matrix for all multi-indices α ∈ I \I2d. The Galerkin
projection onto Sd effectively truncates the infinite expansion of T−1

M in (2.16) after a finite number
of terms and the sum in (3.2) involves only multi-indices α ∈ I2d.

The spectral properties of the SG matrices Gα in (3.4b) are key to determining an efficient
solution strategy for our model problem. Unfortunately, explicit formulae for their eigenvalues remain
elusive (except for low values of d, see [12]). It can be shown, however, that they are very ill-
conditioned with respect to the discretization parameter d. In Corollary 4.6 we will show the spectral
radius of each one can be bounded above by a quantity that is O(exp(Md) exp(|α|/2)).

3.1. Computational aspects. When (3.1) is solved iteratively, matrix-vector products with
the Galerkin matrix dominate the cost of an iteration. Since we use orthonormal basis functions for Sd,
G0 in (3.4a) is the identity matrix and B̂ is block-diagonal. B is sparse and so matrix-vector products
with B̂ can be performed in O(NξNq) operations. Performing multiplications with Â, however, is
challenging. A linear combination of the matrices Gα, with α ∈ I2d, is fully populated, since for
every j, ` = 1, . . . , Nξ there exists an α ∈ I2d, such that [Gα]ι(j),ι(`) 6= 0, (cf. [23, Theorem 18]).
Consequently, Â is block-dense. Each Aα is sparse so matrix-vector products with the completely
assembled Â can be performed in O(N2

ξ Nq) operations. However, storing Â rapidly consumes memory
on desktop computers. The alternative is to only store the |I2d| Kronecker factors Aα and Gα in
(3.2). Writing |I2d| =

(
M+2d

M

)
= NξNp, where Np :=

∏2d
k=d+1

M+k
k ¿ Nξ, matrix-vector products

with Â can then be performed in O((NξNq + N2
ξ Nq)|I2d|) = O((N2

ξ + N3
ξ )NqNp) operations.

In short, the saddle point matrix in (3.1) has the structure displayed in (1.4); the (1,2) block is
block-diagonal and the (1,1)-block is block-dense with N + 1 = |I2d| terms. Fewer terms could be
retained but this corresponds to a premature truncation of T−1

M in (2.16). Such an approximation to
T−1

M does not necessarily satisfy a bound like (2.10).

3.2. Stochastically linear diffusion coefficient. The differences between the saddle point
systems in (3.1) and those encountered in previous work stem from the choice of approximation in
(2.16). Suppose, as was assumed in [11] and [15], that we had started from a linear KL expansion

T−1
M (x , ξ) = t0 + σ

M∑
n=1

√
λnkn(x )ξn(ω). (3.5)

Then, instead of (3.2) we obtain,

Â = G0 ⊗A0 +
M∑

n=1

Gn ⊗An, B̂ = G0 ⊗B, (3.6)

where, with tn(x ) = σ
√

λnkn(x ),

Gn ∈ RNξ×Nξ , [Gn]j,` =
〈
ξnψι(`)ψι(j)

〉
, j, ` = 1, . . . , Nξ, n = 1, . . . M, (3.7a)

An ∈ RNq×Nq , [An]i,k = (tn(x )ϕk,ϕi), i, k = 1, . . . , Nq , n = 1, . . . M. (3.7b)
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The eigenvalues of the matrices Gn in (3.7a) are known explicitly (see [27], [12]). For Gaussian
random variables, the condition number of each Gn grows, at worst, like O(

√
d). Each Gn is also

sparse with only two non-zero entries per row. Â has at most 2M + 1 non-zero blocks per row and
if M ¿ Nξ, matrix-vector products with Â can be performed in only O(NξNq) operations.

For (3.5) to satisfy (2.10), σ must be small relative to t0 =
〈
T−1

〉
and the term G0⊗A0 dominates

in (3.6). The approximation Â ≈ G0 ⊗ A0 was exploited in [11] to obtain a preconditioner of type
(1.2). For stochastically linear problems, such mean-based approximations are effective within the
regime of statistical parameters where the problem is well-posed. For our model problem, however,
there are no restrictions on σG relative to t0, and Â is very ill-conditioned when σG and d are large.
Mean-based preconditioners are not effective. In [15], an augmented preconditioner (1.3) is proposed
with Ŵ = N̂ where N̂ represents the natural norm on Wh ⊗ Sd (see Section 5). It is not based on
a mean-based approximation and so is more robust. However, it is practical only if the Gn matrices
are sparse and Nξ and |I +

2d| are small. For the stochastically nonlinear problem considered here, the
number of Kronecker product pairs |I +

2d| can be very large (see Table 3.1).

Table 3.1
Dimension of Sd and number of Kronecker product pairs in Â for varying M and d.

M = 5 M = 10 M = 20
d = 1 d = 2 d = 3 d = 1 d = 2 d = 3 d = 1 d = 2 d = 3

Nξ = |Id| 6 21 56 11 66 286 21 231 1,771
N + 1 = |I2d| 21 126 462 66 1,001 8,008 231 10,626 230,231

3.3. Stochastic Galerkin versus sampling methods. Approximations based on sampling
(e.g. Monte Carlo, stochastic collocation methods [3]) lead to decoupled deterministic problems,
the number of which usually exceeds Nξ. For stochastically linear problems, where optimal solvers
exist, SG methods are preferred. If TM (x , ξ) is a nonlinear function of ξ it is less clear whether
SG methods are competitive, as robust solvers are lacking. G0 ⊗ A0 is not a good approximation
to Â due, in part, to a dramatic increase in the ill-conditioning of the Gn matrices. For SG finite
element discretizations of (2.2), preconditioners have been suggested in [30] and [32]. SG methods
can only be competitive for challenging PDEs, however, if robust preconditioners are found for the
coupled linear systems of equations they yield. SG systems therefore warrant serious investigation
before conclusions about the efficacy of an approximation scheme for a specific PDE can be made.

4. Schur complement preconditioners. Applying P̂−1
S in (1.2) requires expensive solves

with Â and working with the exact Schur complement is infeasible. An obvious first step towards a
practical preconditioner for (3.1) is to replace Â by a symmetric, positive definite and sparse (e.g.
diagonal) matrix X̂, leading to the preconditioner

P̂X :=

[
X̂ 0
0 B̂X̂−1B̂>

]
, (4.1)

whose performance, according to the following result, depends only on the choice of X̂.
Lemma 4.1. Let 0 < ν1 ≤ ν2 ≤ · · · ≤ νn, where n = NqNξ, denote the eigenvalues of X̂−1Â.

The eigenvalues of P̂−1
X Ĉ lie in the union of the intervals

[
1
2
(ν1 −

√
ν2
1 + 4),

1
2
(νn −

√
ν2

n + 4)
]
∪

[
ν1,

1
2
(νn +

√
ν2

n + 4)
]

. (4.2)

Proof. See, for example, [28, Corollary 3.3].
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Lemma 4.1 hints that the eigenvalues of X̂−1Â should be tightly clustered. On the other hand,
linear systems with coefficient matrix X̂ must be solvable with much less effort than those with Â.
Satisfying both requirements is a tall order. We focus first on the latter, and consider approximations
to Â of the form X̂ = L⊗R where L ∈ RNξ×Nξ and R ∈ RNq×Nq are symmetric and positive definite.
This respects the structure of Â in (3.1) and allows for efficient implementations as X̂−1 = L−1⊗R−1.
Motivated by [11] (see also Section 4.2) we investigate X̂ = L⊗D0 where R = D0 := diag(A0).

4.1. Spectral bounds for X̂−1Â. According to Lemma 4.1, the number of preconditioned
minres iterations required to solve (3.1) with X̂ = L⊗D0 in (4.1), depends on the eigenvalues of

X̂−1Â = L−1 ⊗D−1
0 A0 +

∑

α∈I +
2d

L−1Gα ⊗D−1
0 Aα, (4.3)

which we now investigate.
Lemma 4.2. Let D0 = diag(A0) and define Aα, α ∈ I +

2d, as in (3.3b). If Vh = RT0(D) is based
on uniform meshes of right-angled triangles (for example), then (a) the eigenvalues of D−1

0 A0 lie in
the interval

[
1
2 , 3

2

]
and (b) the eigenvalues of D−1

0 Aα lie in the bounded interval [− 3
2cα, 3

2cα], where

cα := max
x∈D

∣∣tα(x )t−1
0

∣∣ =
σ
|α|
G√
α!

M∏
m=1

(√
λm‖km‖L∞(D)

)αm

, α ∈ I +
2d. (4.4)

Proof. Assertion (a) is shown the proof of [11, Lemma 4.3]. For any q ∈ RNq \{0}, we may define
an r ∈ Vh by r(x ) =

∑
qiϕi(x ), where Vh = span{ϕ1, . . . , ϕNq

}. Then, using (2.18), we obtain

∣∣q>Aαq
∣∣ =

∣∣∣∣∣
σ
|α|
G√
α!

∫

D

M∏
m=1

(√
λmkm(x )

)αm 〈
T−1

〉
r · r dx

∣∣∣∣∣ ≤ cαq>A0q .

For any q ∈ RNq \{0}, −cα ≤ q>Aαq
q>A0q

≤ cα which, in combination with (a), gives the result.
Decay rates of the KL eigenvalues λm and pointwise bounds on the eigenfunctions km, are derived

in [31]. Using these results, we may obtain an upper bound for the constant cα in (4.4).
Corollary 4.3. For a bounded domain D ⊂ R2, let the covariance function CG ∈ L2(D ×D)

in (2.11) be piecewise analytic in the sense of [31, Definition 2.15]. Then, we have the upper bound

cα ≤ κ
|α|
1 e−κ2|α| σ

|α|
G√
α!

, α ∈ I +
2d, (4.5)

where κ1, κ2 > 0 are constants independent of M , d and α. If CG ∈ L2(D ×D) is piecewise smooth
in the sense of [31, Definition 2.15], there exists a constant κ > 0 independent of M , d and α, with

cα ≤ κ|α|
σ
|α|
G√
α!

, α ∈ I +
2d. (4.6)

Proof. If CG is piecewise analytic, combining an estimate for λm in [31, Proposition 2.18] and an
upper bound for ‖km‖L∞(D) in terms of |λm| from [31, Theorem 2.24], it can be shown that

√
λm‖km‖L∞(D) ≤ κ1 exp(−κ2

√
m),

for all m ≥ 1 with constants κ1, κ2 > 0 independent of m. Thus,

M∏
m=1

(
√

λm‖km‖L∞(D))αm ≤
M∏

m=1

(κ1 exp(−κ2

√
m))αm ≤

M∏
m=1

(κ1 exp(−κ2))αm = κ
|α|
1 exp (−κ2|α|) ,
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yielding the upper bound for cα in (4.5). Analogously, for piecewise smooth covariance kernels, from
[31, Corollary 2.22] and [31, Theorem 2.24] it follows that there exists a constant κ > 0 independent
of m, such that, for all m ≥ 1,

√
λm‖km‖L∞(D) ≤ κ, and this completes the proof.

Lemma 4.2 tells us that the eigenvalues of D−1
0 Aα are bounded independently of the discretization

parameter h. However, since |α| ≤ 2d, Corollary 4.3 suggests that those eigenvalues depend on d.

To analyze the eigenvalues of X̂−1Â, we also need to study the matrices Gα, diag(Gα) and L−1Gα.

To this end, we recall, first, an eigenvalue bound from [12]. Denote by (ηm,i, wm,i)
δm

i=1 the nodes and
weights, respectively, of the δm-point Gaussian quadrature rule associated with ρm in (2.15). Then,

〈
ψ(m)

〉
=

∫

Γm

ψ(m)(ξm)ρm(ξm) dξm ≈
δm∑

i=1

ψ(m)(ηm,i)wm,i, m = 1, . . . ,M.

Each quadrature rule on Γm is exact for univariate polynomials ψ(m) ∈ span{1, ξm, . . . , ξ2δm−1
m }. We

can then define a tensor product quadrature rule on Γ = Γ1 × Γ2 · · · × ΓM using the grid,

Ξδ :=
M×

m=1

{ηm,1, ηm,2, . . . , ηm,δm
}, (4.7)

which can be used to establish the following theoretical results.
Lemma 4.4. ([12, Corollary 13]) The eigenvalues of Gα in (3.4b) lie in [θα, Θα], where

θα := min{ψα(η) : η ∈ Ξδ}, Θα := max{ψα(η) : η ∈ Ξδ}, α ∈ I +
2d, (4.8)

δ ∈ NM
0 is a multi-index with δm := d +

⌈
αm+1

2

⌉
, m = 1, . . . ,M and Ξδ is defined as in (4.7).

Lemma 4.5. Let Gα, α ∈ I +
2d, be defined as in (3.4b). The eigenvalues of diag(Gα) also lie in

the interval [θα, Θα], with θα and Θα defined in (4.8).
Proof. Define δ ∈ NM

0 as in Lemma 4.4. The largest eigenvalue of diag(Gα) satisfies:

λmax(diag(Gα)) = max
j=1,...,Nξ

〈
ψαψ2

ι(j)

〉
= max

j=1,...,Nξ

∏M
m=1

∑δm

i=1 ψ
(m)
αm (ηm,i)[ψι(j)m

(ηm,i)]2wm,i

≤ max
j=1,...,Nξ

Θα

∏M
m=1

∑δm

i=1[ψι(j)m
(ηm,i)]2wm,i = max

j=1,...,Nξ

Θα

〈
ψ2

ι(j)

〉
= Θα.

The lower bound for the smallest eigenvalue of diag(Gα) follows analogously.
We can now investigate the constants θα and Θα in (4.8) in more detail.
Corollary 4.6. The eigenvalues of Gα in (3.4b) lie in the interval [−bα, bα] where

bα := exp(M(2d + 1)/2) exp(|α|/2), α ∈ I +
2d. (4.9)

Proof. Apply Lemma 4.4 with the polynomials ψ
(m)
k (ξm) = Hk(ξm/

√
2)/
√

2kk! generated by
the Gaussian pdf (2.15), where Hk is the Hermite polynomial of degree k. For k > 1, all roots
of Hk lie in (−√2k − 2,

√
2k − 2), see [20, Theorem 4] and so all roots of ψ

(m)
k are contained in

(−2
√

k − 1, 2
√

k − 1). The upper bound |ψ(m)
k (ξm)| ≤ exp(ξ2

m/4) follows from the fact that |Hk(ξ)| ≤√
2kk! exp(ξ2/2), cf. [18]. Hence, with δm defined in Lemma 4.4, and Ξδ as in (4.7),

|λ(Gα)| ≤ max {|ψα(η)|, η ∈ Ξδ} ≤
M∏

m=1

|ψ(m)
αm

(2
√

δm − 1)| ≤
M∏

m=1

exp(δm − 1)

≤
M∏

m=1

exp(d + (αm + 1)/2) = exp(M(2d + 1)/2) exp(|α|/2).

Using these spectral inclusion bounds for the Gα matrices we can now prove the following result.
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Theorem 4.7. Let X̂ = L ⊗ D0, where D0 = diag(A0), and L ∈ RNξ×Nξ is any symmetric
positive definite matrix whose eigenvalues lie in [`min, `max] with 0 < `min ≤ `max. For each α ∈ I +

2d,
define cα as in (4.4) and bα as in (4.9). Then, the eigenvalues of X̂−1Â lie in the interval

[
1

2`max
− 3τ

2`min
,

3(1 + τ)
2`min

]
, τ :=

∑

α∈I +
2d

bαcα. (4.10)

Proof. We can estimate the largest eigenvalue of X̂−1Â as follows,

λmax(X̂−1Â) = max
v∈RNξNq\{0}

v>Âv

v>X̂v
= max

v∈RNξNq\{0}

v>
(∑

α∈I2d
Gα ⊗Aα

)
v

v>(L⊗D0)v

≤
∑

α∈I2d

max
v∈RNξNq\{0}

v>(Gα ⊗Aα)v
v>(L⊗D0)v

=
∑

α∈I2d

λmax(L−1Gα ⊗D−1
0 Aα)

=
∑

α∈I2d

max
i,j
{γ(i)

α · ν(j)
α , where γ(i)

α ∈ λ(L−1Gα) and ν(j)
α ∈ λ(D−1

0 Aα)}.

The eigenvalues of L−1 lie in [`−1
max, `−1

min] so part (a) of Lemma 4.2 tells us that the eigenvalues of
L−1G0⊗D−1

0 A0 lie in the interval [ 12`−1
max, 3

2`−1
min]. Combining part (b) of Lemma 4.2 with the fact that

the eigenvalues of L−1Gα lie in [−`−1
maxbα, `−1

minbα] results in spectral bounds for L−1Gα ⊗D−1
0 Aα,

for each α ∈ I +
2d. In particular, λmax(L−1Gα ⊗D−1

0 Aα) ≤ 3
2`−1

minbαcα. Summing over α yields an
upper bound on λmax(X̂−1Â). The lower bound for λmin(X̂−1Â) follows analogously.

Note that in (4.10), τ depends on d, σG and M . If CG is a piecewise analytic covariance function
we can combine the upper bound for cα in (4.5) with the definition of bα in (4.9) to obtain

τ ≤
∑

α∈I +
2d

eM(2d+1)/2e|α|/2κ
|α|
1 e−κ2|α| σ

|α|
√

α!
= eM(2d+1)/2

∑

α∈I +
2d

(κ1σGe1/2−κ2)|α|√
α!

.

Similarly, if CG is piecewise smooth, we obtain

τ =
∑

α∈I +
2d

bαcα ≤
∑

α∈I +
2d

eM(2d+1)/2e|α|/2κ|α|
σ|α|√

α!
= eM(2d+1)/2

∑

α∈I +
2d

(κσG
√

e)|α|√
α!

.

Hence, the message from (4.10) is that a good choice of L is one that damps out ill-conditioning in
X̂−1Â with respect to d, σG and M. We now consider three suggestions for the matrix L.

4.2. Mean-based preconditioners. The preconditioning scheme from [11] corresponds to L =
I (the Nξ ×Nξ identity matrix). Then, X̂ = I ⊗D0 = diag(G0 ⊗A0) and (4.1) is the sparse matrix

P̂0 =
[
I ⊗D0 0

0 I ⊗ S0

]
, (4.11)

where we have introduced S0 := BD−1
0 B> ∈ RNu×Nu . Lemma 4.1 says that the efficiency of P̂0 as a

preconditioner, depends solely on the spectrum of

X̂−1Â = I ⊗D−1
0 A0 +

∑

α∈I +
2d

Gα ⊗D−1
0 Aα. (4.12)

Corollary 4.8. The eigenvalues of P̂−1
0 Ĉ are contained in the union of the intervals in (4.2)

with ν1 ≥ 1
2 − 3

2τ and νn ≤ 3
2 + 3

2τ , where τ is defined as in (4.10).
Proof. The result follows by combining Lemma 4.1 and Theorem 4.7 with L = I and `min =

`max = 1.
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For our model problem, we shall see that X̂ = I ⊗D0 fails to be a robust approximation to Â with
respect to d and σG, leading to unacceptably high minres iteration counts.

4.3. Kronecker product preconditioners. We can improve on (4.11) using a Kronecker
product approximation, introduced for the primal problem (2.1) in [32]. Instead of approximating Â

by the diagonal of a single term in (3.2), the idea is to choose X̂ = G⊗D0, where

G = argmin{H ∈ RNξ×Nξ : ||Â−H ⊗D0||F }
and ‖ · ‖F denotes the Frobenius norm. The solution is available in closed form [33, Theorem 3],

G = I +
∑

α∈I +
2d

tr(A>αD0)
tr(D>

0 D0)
Gα. (4.13)

Note that tr(A>αD0) =
∑Nq

i=1[Aα]i,i[D0]i,i and so the coefficients in (4.13) can be computed cheaply.
Moreover, since Â and D0 are symmetric and positive definite, so are G [33, Theorem 10] and
X̂ = G⊗D0. Since B̂X̂−1B̂> = G−1 ⊗ S0, we arrive at the preconditioner

P̂1 =
[
G⊗D0 0

0 G−1 ⊗ S0

]
. (4.14)

Applying Lemma 4.1, the efficiency of P̂1 depends on the spectrum of

X̂−1Â = G−1 ⊗D−1
0 A0 +

∑

α∈I +
2d

G−1Gα ⊗D−1
0 Aα. (4.15)

Comparing (4.15) with (4.12), we see that some of the ill-conditioning in Gα and D−1
0 Aα can po-

tentially be damped out by G in (4.14); the preconditioner (4.11) offers no such possibility. Since G

in (4.13) is not diagonal in general, approximating the action of P̂−1
1 is more costly than P̂−1

0 . Since
diag(G) is positive definite, we can also consider the cheaper preconditioner

P̂2 =
[
diag(G)⊗D0 0

0 diag(G)−1 ⊗ S0

]
. (4.16)

The (2,2) block of P̂2 is then block-diagonal with Nξ sparse blocks of size Nu ×Nu as in (4.11).
Corollary 4.9. Let G be defined as in (4.13). Let τ be defined as in (4.10) and suppose τ < 1.

If X̂ = G⊗D0 or X̂ = diag(G)⊗D0 then the eigenvalues of P̂−1
X Ĉ are bounded and lie in the union

of the intervals in (4.2) with ν1 ≥ 1
2(1+τ) − 3τ

2(1−τ) and νn ≤ 3(1+τ)
2(1−τ) .

Proof. Apply Theorem 4.7 with L = G and L = diag(G). If τ < 1, we show that we can choose
`min = 1− τ and `max = 1+ τ in (4.10), which, in combination with Lemma 4.1, yields the assertion.
Define Dα := diag(Aα), α ∈ I +

2d. Then, in (4.13), we obtain

| tr(A>αD0)|
tr(D>

0 D0)
=
| tr(D>

αD0)|
tr(D>

0 D0)
≤ ‖Dα‖F ‖D0‖F

‖D0‖2F
=
‖Dα‖F

‖D0‖F
.

Furthermore, we estimate

‖Dα‖2F =
Nu∑

i=1

(∫

D

〈
T−1

〉 σ
|α|
G√
α!

M∏
m=1

(
√

λmkm(x ))αmϕi ·ϕi dx

)2

≤ σ
2|α|
G

α!

M∏
m=1

(
√

λm‖km‖L∞(D))2αm

Nu∑

i=1

(∫

D

〈
T−1

〉
ϕi ·ϕi dx

)2

= c2
α‖D0‖2F .
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Thus, −cα ≤ tr(A>αD0)

tr(D>
0 D0)

≤ cα, α ∈ I +
2d, and consequently,

λmax(G) ≤ 1 +
∑

α∈I +
2d

cαλmax(Gα) ≤ 1 +
∑

α∈I +
2d

cαbα = 1 + τ, (4.17)

where bα is defined in (4.9). The bound λmin(G) ≥ 1 − τ follows analogously, giving the desired
result for L = G. In Lemma 4.5 we established that for each α ∈ I +

2d the spectral bounds for Gα

also hold for diag(Gα). Hence, replacing Gα by diag(Gα) in (4.17) also yields the upper bound

λmax(diag(G)) ≤ 1 +
∑

α∈I +
2d

cαλmax(diag(Gα)) ≤ 1 +
∑

α∈I +
2d

cαbα ≤ 1 + τ,

and similarly, λmin(diag(G)) ≥ 1− τ , which completes the proof for the case L = diag(G).
The spectral inclusion bounds in Corollaries 4.8–4.9 are of course of limited value in practise.

They do not provide information on the clustering of the eigenvalues and cannot be used to predict a
priori, which preconditioner will perform best in terms of iteration counts. Indeed, we have derived
the same bounds for both P̂1 and P̂2 in Corollary 4.9 but we shall see in Section 6 that the performance
of these preconditioners, in terms of minres iterations, is by no means the same. The bounds do tell
us, however, that iteration counts, for all the preconditioners, are likely to be affected by σG, d and
M since those parameters influence τ. When τ < 1, we can see that the bound in Corollary 4.8 for
P̂0 is better than the bound in Corollary 4.9 for the preconditioners P̂1 and P̂2. This fits with our
intuition since for τ < 1, σG and d have to be small and we’d expect the mean-based preconditioner
P̂0 to perform adequately in that case.

4.4. Practical Schur complement preconditioners. Computing the actions of P̂−1
0 , P̂−1

1 ,
and P̂−1

2 involves solving Nξ linear systems with the sparse coefficient matrix S0 = BD−1
0 B>. Since

S0 is a discrete representation of the elliptic differential operator ∇ · 〈T 〉∇, those systems can be
solved approximately in O(Nu) operations, using a wide variety of standard multigrid methods. In
Section 6 we apply, specifically, one V-cycle of a black-box algebraic multigrid method (amg, see [7]).
To analyze the impact of this extra approximation, let V0 be an approximation to S0 that satisfies

0 < θ2 ≤ w>S0w

w>V0w
≤ Θ2 ∀w ∈ RNu\{0}, for some θ, Θ ∈ R+. (4.18)

Lemma 4.10. Let X̂ = L ⊗ D0, where L ∈ RNξ×Nξ is symmetric and positive definite. Let
0 < ν1 ≤ · · · ≤ νn, n = NqNξ, denote the eigenvalues of X̂−1Â. The eigenvalues of P̂−1

amgĈ, where

P̂amg =
[
L⊗D0 0

0 L−1 ⊗ V0

]
, (4.19)

and Ĉ denotes the Galerkin matrix in (3.1), lie in the union of the intervals
[
1
2
(ν1 −

√
ν2
1 + 4Θ2),

1
2
(νn −

√
ν2

n + 4θ2)
]
∪

[
ν1,

1
2
(νn +

√
ν2

n + 4Θ2)
]

.

Proof. (4.19) is a preconditioner of the form (1.2) with X̂ = L⊗D0 where B̂X̂−1B̂T = L−1⊗S0

has been approximated by L−1 ⊗ V0. The result follows using [28, Corollary 3.4] by noting that the
efficiency of that approximation only depends on the constants in (4.18) since

vT (B̂X̂−1B̂)v
vT (L−1 ⊗ V0) v

=
vT

(
L−1 ⊗ S0

)
v

vT (L−1 ⊗ V0) v
=

wT S0w

wT V0w

for any v = u ⊗w ∈ RNξNu\ {0} with u ∈ RNξ and w ∈ RNu.
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Applying the (1,1) block of P̂amg in each minres iteration requires Nξ solves with the diagonal
matrix D0 and Nq solves with L. If L is fully populated, this requires O(Nq (Nξ + N2

ξ )) operations,
assuming a Cholesky decomposition of L is given. If L is diagonal, applying the (1,1) block of
(4.19) costs only O(NqNξ) operations. Applying the (2,2) block of the preconditioner requires Nξ

single amg V-cycles on linear systems with coefficient matrix S0 and Nu multiplications with L. This
requires O(Nu(Nξ +N2

ξ )) operations in general, or O(NuNξ) operations if L is diagonal. In summary,
applying the preconditioner costs less than one matrix-vector product with the saddle point matrix,
if L is diagonal. Moreover, if we store the Kronecker product factors of Ĉ instead of assembling it,
applying P̂amg is cheaper than one matrix-vector product with Ĉ even for a fully populated matrix
L (cf. the discussion at the end of Section 3.1).

5. Augmented preconditioners. We now focus on preconditioners of the form (1.3). To
motivate a certain choice of weight matrix Ŵ we review, first, the discrete inf-sup condition.

The natural norms on the spaces V and W are, respectively,

‖ v ‖2V =
〈
‖ v ‖2H(div;D)

〉
, ‖ w ‖2W =

〈
‖ w ‖2L2(D)

〉
. (5.1)

Define the finite element matrices AI ∈ RNq×Nq , D ∈ RNq×Nq and N ∈ RNu×Nu via

[AI ]ij =
(
ϕi, ϕj

)
, [D]ij =

(∇ ·ϕi,∇ ·ϕj

)
, [N ]rs = (φr, φs) . (5.2)

Recalling that G0 = I, for vhd ∈ Vh ⊗ Sd and whd ∈ Wh ⊗ Sd, we have

‖ vhd ‖2V = vT (ÂI + D̂)v , ‖ whd ‖2W = wT N̂w , (5.3)

where D̂ = I ⊗D, ÂI = I ⊗ AI , N̂ = I ⊗N and v ∈ RNq and w ∈ RNu are the coefficient vectors
associated with vhd and whd respectively. If discontinuous pressure approximation is used, note that
N is a diagonal matrix.

For our specific Vh,Wh and Sd, it was shown in [15] that ∃ β̂ > 0 depending only on the physical
domain and the Raviart-Thomas interpolation operator Πh : H1(D) → Vh [8, Ch.3] such that:

sup
vhd ∈Vh⊗Sd\{0}

〈b (vhd, whd)〉
‖ vhd ‖V

≥ β̂ ‖ whd ‖W ∀whd ∈ Wh ⊗ Sd. (5.4)

Equivalently, we have

β̂2 ≤ vT B̂(ÂI + D̂)−1B̂Tv

vT N̂v
∀v ∈ RNξNu\ {0}

and writing v = u ⊗w where u ∈ RNξ and w ∈ RNu gives

β̂2 ≤ vT
(
I ⊗B(AI + D)−1BT

)
v

vT (I ⊗N) v
=

wT B(AI + D)−1BTw

wT Nw
. (5.5)

Now, for any deterministic finite element spaces Vh, Wh that satisfy the usual inf-sup condition

sup
vh ∈Vh\{0}

b (vh, wh)
‖ vh ‖H(div;D)

≥ β ‖ wh ‖L2(D) ∀wh ∈ Wh, (5.6)

there exists a constant β > 0 independent of the characteristic mesh size h such that

β2 ≤ wT B (AI + D)−1
BTw

wT Nw
∀w ∈ RNu\ {0} .

From (5.5) we see that β̂ coincides with the deterministic inf-sup constant. This is not a coincidence.
Starting from any deterministic pair Vh and Wh satisfying (5.6), the commutativity diagram (see [8,
pp.131]) that connects H(div; D), L2(D), Vh and Wh can be easily re-drawn for the tensor product
spaces H(div;D)⊗ Sd, L2(D)⊗ Sd, Vh ⊗ Sd and Wh ⊗ Sd for any Sd ⊂ L2

ρ(Γ).
13



5.1. H(div) preconditioning. In [15], the so-called H(div) preconditioner

P̂div :=

[
Â + D̂ 0

0 N̂

]
, (5.7)

is studied, where N̂ = I⊗N, D̂ = B̂T N̂−1B̂ = I⊗BT N−1B and N is the deterministic mass matrix.
P̂div is equivalent to (1.3) with γ = 1 and weight matrix Ŵ = N̂ . Thanks to (5.3), N̂ provides a
discrete representation of the norm ‖ · ‖W on Wh ⊗ Sd. We also have

vT
(
Â + D̂

)
v =

〈(
T−1

M vhd, vhd

)〉
+ 〈(∇ · vhd,∇ · vhd)〉 =

〈‖ vhd ‖2div,TM

〉
. (5.8)

Choosing Ŵ = N̂ allows us to express the eigenvalues of P̂−1
div Ĉ in terms of the inf-sup constant β̂ in

(5.4). This leads to spectral inclusion bounds that are independent of the parameters h, d and M. To
obtain bounds that are also independent of Tmin,M and Tmax,M in (2.10) we consider a parameterized
version of the same preconditioner.

Theorem 5.1. Let γ > 0. The generalized eigenvalue problem,
(

Â B̂T

B̂ 0

) (
q
u

)
= λ

(
Â + γ−1B̂T N̂−1B̂ 0

0 γN̂

)(
q
u

)
(5.9)

has NξNq eigenvalues at +1. The remaining NξNu values are negative and lie in the bounded interval
(
−1,− β̂2 Tmin,M

γ + β̂2 Tmin,M

]
, (5.10)

where Tmin,M is defined in (2.10) and β̂ is the inf-sup constant defined in (5.4).
Proof. It is easy to see that all positive eigenvalues lie in a cluster at +1. This is a major benefit

of augmented preconditioning. The remaining eigenvalues are negative and satisfy

B̂
(
Â + γ−1B̂T N̂−1B̂

)−1

B̂Tu = −λγN̂u (5.11)

(see [34], [28]). The positive values −λ coincide with the values σi

1+σi
where σi > 0 is an eigenvalue

of (γN̂)−1B̂Â−1B̂T . From (5.4) we have, for any whd ∈ Wh ⊗ Sd

T
1
2

min,M β̂ ‖ whd ‖W ≤ sup
v ∈Vh⊗Sd\{0}

〈(∇ · vhd, whd)〉〈
‖ T

− 1
2

M vhd ‖L2(D)

〉 = max
v∈RNq

wT B̂v

(vT Âv)
1
2

=
(
wT B̂Â−1B̂Tw

) 1
2

.

Since ‖ whd ‖2W = wT N̂w , we have mini {σi} ≥ γ−1β̂2Tmin,M and the result follows.
Theorem 5.1 indicates that as γ → 0 the negative eigenvalues cluster at −1. Choosing γ =

O(Tmin,M ) leads to a bound that is independent of the PDE coefficients. However, it is not desirable
to choose γ too small, as this can cause numerical difficulties for preconditioned minres.

5.2. Alternative weight matrix. Now consider the alternative preconditioner

P̂L,div :=

[
Â + γ−1B̂T Ŵ−1

L B̂ 0
0 γŴL

]
, (5.12)

where ŴL = L−1 ⊗ N and L ∈ RNξ×Nξ is any symmetric positive definite matrix. The following
result says that if γ and L are chosen appropriately, preconditioned minres will converge in a few
iterations, independently of all the problem parameters.
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Lemma 5.2. Let L be a symmetric positive definite matrix. P̂−1
L,divĈ has NξNq eigenvalues at

+1. The remaining NξNu eigenvalues are negative and contained in the interval (−1,−c], where

c :=
β̂2 `min Tmin,M

γ + β̂2 `min Tmin,M

> 0, (5.13)

Tmin,M is defined in (2.10), β̂ is defined in (5.4) and `min > 0 is the minimum eigenvalue of L.

Proof. Follow the proof of Theorem 5.1 and substitute ŴL = L−1 ⊗N for N̂ . This time, σi > 0
is an eigenvalue of (γŴL)−1

(
B̂Â−1B̂T

)
and from (5.4) we have

β̂2 ≤ 1
Tmin,M

wT B̂Â−1B̂Tw

wT ŴLw
· w

T ŴLw

wT N̂w
≤ 1

`minTmin,M

wT B̂Â−1B̂Tw

wT ŴLw
∀w ∈ RNu\ {0} .

To apply (5.12) we need to be able to approximate the action of (Â + γ−1B̂T Ŵ−1
L B̂)−1. A

multigrid method that exploits the bilinear form (5.8) was introduced in [15] to solve linear systems
of equations with coefficient matrix Â + B̂T N̂−1B̂. If L = I, ŴL = I ⊗N and

vT
(
Â + γ−1B̂T Ŵ−1

L B̂
)
v =

〈(
T−1

M vhd, vhd

)〉
+ γ−1 〈(∇ · vhd,∇ · vhd)〉 . (5.14)

The multigrid method from [15] can be applied, even if γ 6= 1. It becomes excessively expensive,
however, as M and d increase as it requires exact solves with matrices of dimension O(Nξ)×O(Nξ)
at each smoothing step, at each level. For an arbitrary matrix L there is no obvious bilinear form
on Vh ⊗ Sd to which Â + γ−1B̂T Ŵ−1

L B̂ corresponds that can be used to develop a practical solution
algorithm. Our motivation for allowing L 6= I is as follows.

5.3. Cheaper preconditioner. For brevity, let D̂L = B̂T Ŵ−1
L B̂. To develop a cheaper pre-

conditioner than the one studied in [15] we want to replace Â in (5.12) with an approximation of the
form X̂ = L⊗A0. If ŴL = L−1 ⊗N then

X̂ + γ−1D̂L = L⊗A0 + γ−1L⊗BT N−1B = L⊗ (
A0 + γ−1BT N−1B

)
. (5.15)

The right Kronecker factor in (5.15) is associated with a weighted deterministic H(div) bilinear form
on Vh. Specifically, for any vh ∈ Vh, with associated coefficient vector v ∈ RNq , we have

vT
(
A0 + γ−1BT N−1B

)
v = (t0 vh, vh) + γ−1 (∇ · vh,∇ · vh) . (5.16)

Crucially, this means that existing deterministic solvers can be exploited (e.g. see [1], [17]) since

(X̂ + γ−1D̂L)−1 = L−1 ⊗ (
A0 + γ−1BT N−1B

)−1
.

To analyze the efficiency of the resulting preconditioner

P̂X,div :=

[
X̂ + γ−1D̂L 0

0 γŴL

]
(5.17)

compared to (5.12), we need the following result.
Lemma 5.3. Let X̂ be symmetric and positive definite and let 0 < ν1 ≤ . . . ≤ νn where n = NξNq,

be the eigenvalues of X̂−1Â. The generalised eigenvalue problem

(Â + γ−1D̂L)v = λ(X̂ + γ−1D̂L)v (5.18)

has Nξ(Nq −Nu) eigenvalues independent of γ which are contained in the interval [ν1, νn]. All NξNq

eigenvalues are contained in the interval [α1, α2] where α1 = min(1, ν1) and α2 = max(1, νn).
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Proof. X̂ and Â are positive definite and D̂L is positive semi-definite so λ > 0. If v ∈ null(B̂)
then Âv = λX̂v . B̂ has a nullspace of dimension Nξ(Nq −Nu), so at least Nξ(Nq −Nu) eigenvalues
are contained in the interval [ν1, νn]. Rearranging (5.18) gives

γ(Â− λX̂)v = (λ− 1)D̂Lv . (5.19)

If (λ− 1) ≤ 0 then Â−λX̂ is negative semi-definite and ν1 ≤ λ ≤ 1. If λ > 1 then Â−λX̂ is positive
semi-definite and 1 < λ ≤ νn. Hence λ ∈ [ν1, 1] ∪ (1, νn].

Note that if, for the chosen X̂, we have ν1 ≤ 1 ≤ νn then all eigenvalues in (5.18) lie in [ν1, νn].
Remark 5.4. Lemma 5.3 says that a subset of eigenvalues in (5.18) are insensitive to γ and

depend only on X̂. Observe also that if v /∈ null(B̂), D̂Lv 6= 0 and so if γ → 0 in (5.19) then λ → 1.
Hence the remaining eigenvalues can be forced to cluster at +1 by choosing γ small enough.

Lemma 5.5. Let X̂ satisfy the conditions of Lemma 5.3 and let ŴL = L−1 ⊗ N where L is
symmetric and positive definite. Then, the eigenvalues of

(
Â B̂T

B̂ 0

) (
q
u

)
= λ

(
X̂ + γ−1D̂L 0

0 γŴL

)(
q
u

)
(5.20)

are contained in the union of the intervals
[
−√α2,

1
2

(
α1(1− c)−

√
α2

1(c− 1)2 + 4 c α1

)]
∪ [α1, α2], (5.21)

where c is defined in (5.13) and α1 = min(1, ν1) and α2 = max(1, νn).
Proof. This result is similar to [15, Theorem 6] which is for the deterministic problem with γ = 1,

L = I and α2 = 1. Eliminating u in (5.20) and rearranging gives

λ(Â + γ−1D̂L)q + γ−1(1− λ)D̂Lq = λ2(X̂ + γ−1D̂L)q .

Let λ > 0. Since null(D̂L) = null(B̂) at least Nξ(Nq −Nu) eigenvalues are contained in [ν1, νn] and
are independent of γ. The remaining NξNu positive eigenvalues must satisfy λ → 1 as γ → 0. Lemma
5.3 says that γ−1(1− λ)qT D̂Lq ≤ (λ2α−1

1 − λ)qT (Â + γ−1D̂L)q . If λ ≤ 1 then since qT D̂Lq ≥ 0 we
must have λ2α−1

1 −λ ≥ 0 and so λ ∈ [α1, 1]. Similarly, if λ > 1 then λ2α−1
2 −λ ≤ 0 and so λ ∈ (1, α2].

Hence the positive eigenvalues belong to [α1, 1] ∪ (1, α2] = [α1, α2].
Now let λ < 0. Eliminating q gives

B̂(λ(X̂ + γ−1D̂L)− Â)−1B̂Tu = λγŴLu .

These NξNu eigenvalues coincide with the values σi

1+σi
where −1 < σi < 0 is an eigenvalue of

B̂
(
λ

(
X̂ + γ−1D̂L

)
−

(
Â + γ−1D̂L

))−1

B̂Tu = σγŴLu .

The eigenvalues of (λ(X̂ + γ−1D̂L)− (Â + γ−1D̂L))−1x = µ(Â + γ−1D̂L))−1x satisfy

λµ

1 + µ
=

xT (Â + γ−1D̂L)x

xT (X̂ + γ−1D̂L)x
. (5.22)

Setting x = B̂Tu and using Lemma 5.3 it can then be shown that

α2

λ− α2
≤ uT B̂(λ(X̂ + γ−1D̂L)− (Â + γ−1D̂L))−1B̂Tu

uT B̂(Â + γ−1D̂L)−1B̂Tu
≤ α1

λ− α1
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and using Lemma 5.2 that

α2

λ− α2
≤ uT B̂(λ(X̂ + γ−1D̂L)− (Â + γ−1D̂L))−1B̂Tu

uT (γŴL)u
≤ c α1

λ− α1
.

Hence α2
λ ≤ σ

1+σ ≤ c α1
λ+α1(c−1) . This gives α2 ≥ λ2 and λ2 + λα1 (c− 1) − cα2 ≥ 0 and solving for λ

gives the result.
Remark 5.6. If X̂ = Â, α1 = 1 = α2 and (5.21) reduces to the bound in Lemma 5.2.
Remark 5.7. If γ → 0 then, in (5.13), c → 1, leading to spectral inclusion bounds (5.21) that

depend only on α1 and α2 i.e. on the choice of X̂. However, in the limit γ → 0, (5.21) is pessimistic.
In (5.22), x = B̂Tu /∈ null(B̂). By Remark 5.4, the bound [α1, α2] is pessimistic for that subset of
eigenvalues of (5.18) and, in fact, for the given x , λµ

1+µ → 1 as γ → 0. Asymptotically, then (5.21)
reduces to [−1] ∪ [α1, α2]. A subset of the positive eigenvalues of the preconditioned system in (5.20)
are also forced to +1 as γ → 0. There remain, however, Nξ(Nq − Nu) positive eigenvalues lying in
[ν1, νn] that are completely insensitive to γ and that can only be controlled via the choice of X̂.

In view of (5.15) we’d like to choose X̂ = L ⊗ A0 so that known deterministic solvers can be
exploited. In that case, we have

X̂−1Â = L−1 ⊗ I +
∑

α∈I +
2d

L−1Gα ⊗A−1
0 Aα. (5.23)

From our study of Schur-complement preconditioners, it is clear that we cannot achieve spectral
inclusion bounds for X̂−1Â that are independent of all the problem parameters. However, by Remark
5.7, there is hope that by choosing γ appropriately, the weakness of the approximation X̂ will only
have an impact on the positive eigenvalues of the preconditioned system.

Lemma 5.8. Let X̂ = L⊗A0 where L ∈ RNξ×Nξ is any symmetric positive definite matrix whose
eigenvalues lie in the interval [`min, `max], where 0 < `min ≤ `max. For each α ∈ I +

2d, define cα as
in (4.4), and bα as in (4.9). Then, the eigenvalues of X̂−1Â lie in the interval

[
1

`max
− τ

`min
,

(1 + τ)
`min

]
, τ :=

∑

α∈I +
2d

bαcα > 0. (5.24)

Proof. Follow the proof of Theorem 4.7 replacing D0 = diag(A0) with A0.

Since Â is positive definite, ν1 = λmin(X̂−1Â) > 0 but the lower bound in (5.24) is not necessarily
positive. The message is clear, however. Since τ increases with d, σG and M a good choice of L is a
matrix that damps out ill-conditioning caused by those parameters.

5.4. Mean-based preconditioners. For comparison, consider first L = I. Then X̂ = I ⊗ A0

and (5.17) is the mean-based preconditioner

P̂0,div :=




I ⊗ (A0 + γ−1BT N−1B) 0

0 I ⊗ γN


 . (5.25)

Corollary 5.9. The eigenvalues of P̂−1
0,divĈ are bounded and contained in the union of the

intervals in (5.21) where c is defined in (5.13) with lmin = 1, α1 = ν1 ≥ 1− τ and α2 = νn ≤ 1 + τ.

Proof. From (5.23) we have X̂−1Â = Î + Ŝ where Î is the NξNq×NξNq identity matrix and Ŝ is
indefinite. Using Lemma 5.8 with L = I gives 1− τ ≤ ν1 and νn ≤ 1 + τ. We also have ν1 ≤ 1 ≤ νn

and so the result follows by Lemma 5.5.
When σG and d are large we can expect this preconditioner, like the Schur-complement precon-

ditioner P̂0, to lose efficiency.
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5.5. Kronecker product preconditioners. Alternatively, we can again adopt the best-fit
approach introduced in [32]. If we choose X̂ = Q⊗A0 with

Q = argmin{H ∈ RNξ×Nξ : ||Â−H ⊗A0||F }
we arrive at the preconditioner

P̂1,div :=




Q⊗ (A0 + γ−1BT N−1B) 0

0 Q−1 ⊗ γN


 (5.26)

where Q is the symmetric and positive definite matrix

Q = I +
∑

α∈I +
2d

tr(A>αA0)
tr(A>0 A0)

Gα (5.27)

(cf. [33, Theorem 3]). Since L = Q ∈ RNξ×Nξ is not diagonal we also consider

P̂2,div :=




diag(Q)⊗ (A0 + γ−1BT N−1B) 0

0 diag(Q)−1 ⊗ γN


 . (5.28)

Corollary 5.10. The eigenvalues of P̂−1
1,divĈ and P̂−1

2,divĈ are bounded and contained in the
union of the intervals in (5.21) where c is defined in (5.13) with lmin ≥ 1− τ.

Proof. Apply Lemma 5.5. The lower bound for lmin can be established as in Corollary 4.9.

5.6. Practical augmented preconditioners. In [1]–[2], a geometric multigrid method for
solving linear systems of equations arising from discretizations of the bilinear form (5.16) is analyzed.
Specifically, [2] shows that when t0 is constant, the matrix V div

0 whose inverse corresponds to the
application of one multigrid V-cycle to a system with coefficient matrix A0 + γ−1BT N−1B, satisfies

1− δ ≤ vT (A0 + γ−1BT N−1B)v
vT V div

0 v
≤ 1, ∀v ∈ RNq \ {0} (5.29)

where δ > 0 is a constant depending only on the number of smoothing steps performed. In Section 6
we implement the method from [1]–[2]. However, any V div

0 which satisfies (5.29) and whose inverse
can be applied in O(Nq) work, can be used as a building block to obtain practical versions of the
preconditioners (5.25), (5.26) and (5.28). Consider, then

P̂L,div,mg :=
[
L⊗ V div

0 0
0 L−1 ⊗ γN

]
. (5.30)

Corollary 5.11. Let V div
0 ∈ RNq×Nq be any matrix that satisfies (5.29). The eigenvalues of

P̂−1
L,div,mgĈ are contained in the union of the intervals (5.21) where α1 is replaced by α̂1 = (1− δ)α1.

Proof. Follow the proof of Lemma 5.5 replacing X̂L + γ−1D̂L in the (1,1) block of the precondi-
tioner with L⊗ V div

0 . For λ > 0 we obtain

λ(Â + γ−1D̂L)q + γ−1(1− λ)D̂Lq = λ2(L⊗ V div
0 )q . (5.31)

Observe that for any q ∈ RNξNq with q = u ⊗ v ,

qT (Â + γ−1D̂L)q
qT (L⊗ V div

0 )q
=

qT (Â + γ−1D̂L)q
qT (L⊗ (A0 + γ−1BT N−1B)q

qT (L⊗ (A0 + γ−1BT N−1B))q
qT (L⊗ V div

0 )q

=
qT (Â + γ−1D̂L)q

qT (X̂L + γ−1D̂L)q

vT (A0 + γ−1BT N−1B)v
vT V div

0 v
.
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Hence, if (5.29) holds, the eigenvalues of (Â + γ−1D̂L)v = µ(L ⊗ V div
0 )v belong to the interval

[α̂1, α2] where α̂1 = (1 − δ)α1 and (from Lemma 5.3) α1 = min(1, ν1) and α2 = max(1, νn) with
ν1 = λmin(X̂−1

L Â) and νn = λmax(X̂−1
L Â). In (5.31) we then have

γ−1(1− λ)qT D̂Lq ≤ (λ2α̂−1
1 − λ)qT (Â + γ−1D̂)q .

If λ ≤ 1 then λ2α̂−1
1 − λ ≤ 0 so λ ∈ [α̂1, 1]. If λ > 1 then λ2α−1

2 − λ ≤ 0 and so λ ∈ (1, α2]. Hence
the positive eigenvalues belong to [α̂1, 1] ∪ (1, α2] = [α̂1, α2]. The bound for the negative eigenvalues
follows from (5.22) with X̂L + γ−1D̂L replaced by L⊗ V div

0 and α1 replaced by α̂1.

Remark 5.12. The performance of P̂L,div,mg in (5.30) depends on δ in (5.29). For the multigrid
method from [1]–[2], δ depends on the number of smoothing steps and potentially on t0(x ) (if it is
not spatially constant) but is independent of the augmentation parameter γ.

Applying the (1,1) block of P̂L,div,mg, in each minres iteration, requires Nξ single V-cycles of
a multigrid method on systems with coefficient matrix A0 + γ−1BT N−1B and Nq solves with L.
Assuming the multigrid method is optimal, the cost per iteration is O((Nξ + N2

ξ )Nq) if L = Q
(and a Cholesky decomposition is given) or O(NξNq) if L is diagonal. Inverting the (2,2) block
requires Nu multiplications with L and Nξ solves with the diagonal matrix N. The associated cost is
O((Nξ + N2

ξ )Nu) if L = Q or O(NξNu) if L is diagonal. Once again, if Ĉ is not assembled, the cost
of applying each preconditioner is less than the cost of a matrix-vector product with Ĉ. Note that
increasing the number of smoothing steps ν in a multigrid method improves the constant δ in (5.29),
so minres iterations, and hence matrix-vector products, can be saved for a fixed L, by increasing ν.

6. Numerical examples. We discretize (2.3) on the unit square with f(x ) = 1 and g(x ) = 0.
For the spatial discretization we employ RT0 − P0 triangular elements. The finite element mesh
consists of 322 squares, each divided into two triangles, resulting in Nx = Nq + Nu = 5, 184 spatial
degrees of freedom. The coefficient T is modelled as a lognormal random field as discussed in Section
2.2. The Gaussian field G is a truncated KL expansion, with µG = 1 and standard deviation σG ≥ 0.
The covariance function is CovG(x ,y) = σ2

GrK1(r) where r = ‖x−y‖2 and K1 is the modified Bessel
function of the second kind with order one. We use M = 5 random variables in (2.12) to capture
97% of the Gaussian field’s total variance and Sd consists of polynomials of total degree d in those 5
variables. The dimension of the resulting Galerkin matrix is given in Table 6.1.

Table 6.1
Values of Nξ, NxNξ and number of terms N + 1 in the Kronecker product representation of Â.

d=1 d=2 d=3 d=4 d=5
Nξ 6 21 56 126 252

N + 1 21 126 462 1,287 3,003
NxNξ 31,104 108,864 290,304 653,184 1,306,368

Below, we report preconditioned minres iteration counts for the model problem and investigate
the robustness of all the preconditioners discussed, with respect to d and σG. All experiments were
performed in matlab 7.5 and the stopping criterion for the iteration was a reduction of the Euclidean
norm of the preconditioned relative residual error to tol = 10−8.

6.1. Schur complement preconditioning. First, we apply the preconditioners P̂0, P̂1, and P̂2

from (4.11), (4.14) and (4.16), and the cheaper multigrid versions (4.19). The multigrid experiments
were performed with a matlab version of the black-box amg code HSL MI20 [7] using one pre and
post smoothing step. Timings are reported in parentheses (in seconds) and include set-up.

As expected, P̂0 is not robust with respect to variations in d and σG. Replacing L = I with
L = G and diag(G), saves a significant number of iterations when d and σG are large. For d = 4 and
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Table 6.2
Iteration counts (and timings) for exact and multigrid versions of Schur-complement preconditioners

exact version multigrid version
σG d=1 d=2 d=3 d=4 d=1 d=2 d=3 d=4
0.2 45 53 61 69 47 (2) 57 (22) 65 (245) 74 (2979)
0.4 57 83 114 148 61 (3) 89 (35) 121 (534) 148 (6321)

P̂0 0.6 72 129 210 320 77 (3) 139 (53) 225 (1369) 345 (13794)
0.8 93 204 397 698 99 (4) 219 (84) 425 (2604) 747 (29808)
1.0 118 316 730 1489 126 (5) 339 (129) 785 (4719) 1597 (63911)
0.2 37 40 43 46 40 (2) 42 (13) 45 (169) 48 (1291)
0.4 43 50 58 65 45 (2) 53 (15) 60 (229) 68 (1688)

P̂1 0.6 47 63 78 95 51 (2) 66 (18) 81 (307) 99 (2553)
0.8 54 80 108 141 56 (2) 82 (24) 111 (419) 145 (3651)
1.0 61 98 146 203 64 (3) 102 (28) 152 (575) 210 (5177)
0.2 45 53 60 67 47 (2) 55 (15) 64 (235) 72 (1799)
0.4 56 78 103 131 58 (2) 83 (22) 111 (411) 140 (3477)

P̂2 0.6 70 114 175 252 73 (3) 123 (32) 185 (689) 266 (6645)
0.8 84 165 292 474 90 (3) 175 (44) 307 (1142) 496 (12435)
1.0 100 234 476 865 107 (4) 248 (62) 495 (1843) 892 (17356)

σG = 1.0, using P̂1 in place of P̂0 saves 16 hours of computation time! Although the cost per iteration
is higher for P̂1 than P̂2, the number of iterations saved with P̂1 is substantial and increases with d.
The deficiency of all the Schur-complement preconditioners is that they rely on cheap approximations
to both Â and Â−1. Here, approximating Â with L⊗ diag(A0) provides a cheap preconditioner that
can be implemented with known deterministic algorithms. The approximation is optimal with respect
to h, µG and M but the approximation is just too weak with respect to d and σG.

6.2. Augmented preconditioning. Next, we apply the preconditioners from Section 5. First
we apply the ideal preconditioner P̂div with γ = 10−3. The results in Table 6.3 confirm the result
from Theorem 5.1, namely that the eigenvalues of P̂−1

div Ĉ are clustered at ±1 when γ is small enough.

Table 6.3
minres iteration counts for exact version of the full preconditioner P̂div .

d σG = 0.2 σG = 0.4 σG = 0.6 σG = 0.8 σG = 1.0
1 3 3 3 3 3
2 3 3 3 3 3
3 3 3 3 3 3

Fixing γ = 10−3 we apply the preconditioners P̂0,div, P̂1,div, and P̂2,div defined in (5.25), (5.26)
and (5.28) and the corresponding multigrid versions (5.30). Choosing a smaller value of γ leads
to smaller iteration counts but can skew the norm in which the preconditioned minres iteration is
converging. Timings are reported in parentheses (in seconds) and include set-up time. The H(div)
multigrid method we have applied is from [1] and is best implemented in parallel. Our experiments
were performed in serial. To minimize computing times, the multigrid preconditioners are applied
with d pre and post smoothing steps per V-cycle.

We observe, as it typical with augmented preconditioners, that iteration counts are lower than for
the Schur-complement preconditioners. We don’t need to approximate A0 by a diagonal matrix and
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Table 6.4
Iteration counts (and timings) for exact and multigrid versions of augmented preconditioners

exact version multigrid version
σG d=1 d=2 d=3 d=4 d = 1 d=2 d=3 d=4
0.2 6 8 9 10 24 (4) 19 (11) 16 (45) 16 (398)
0.4 7 12 15 18 28 (4) 24 (12) 24 (67) 27 (670)

P̂0,div 0.6 8 15 21 27 33 (4) 32 (16) 35 (97) 43 (712)
0.8 10 17 28 44 39 (5) 42 (25) 51 (165) 67 (1521)
1.0 12 20 41 69 46 (6) 54 (31) 72 (288) 100 (1636)
0.2 6 7 8 8 21 (3) 15 (10) 13 (54) 13 (220)
0.4 8 10 11 12 24 (4) 19 (12) 18 (74) 17 (430)

P̂1,div 0.6 9 13 15 17 26 (4) 21 (13) 21 (86) 23 (579)
0.8 10 16 19 22 28 (4) 24 (14) 26 (107) 29 (737)
1.0 12 18 23 28 31 (4) 29 (17) 33 (134) 31 (973)
0.2 7 8 9 10 24 (4) 19 (12) 16 (65) 16 (402)
0.4 8 12 15 17 28 (4) 24 (14) 24 (98) 26 (652)

P̂2,div 0.6 9 16 21 26 32 (5) 31 (18) 34 (137) 41 (675)
0.8 11 19 32 43 37 (6) 40 (23) 49 (197) 61 (993)
1.0 13 25 43 66 43 (6) 52 (31) 68 (273) 94 (1536)

results can always be tuned by changing the augmentation parameter γ. Although the underlying
approximations to Â are still weak, the impact is reduced. Ultimately, no choice of L we have found
yields an optimal approximation to Â with respect to d and σG. However, using P̂1,div leads to
significant computational savings compared to the mean-based preconditioner P̂0,div when σG and d

are large. The savings are more moderate than for P̂1 however since P̂0,div leads to far lower iteration
counts than P̂0. This time, no savings are achieved with P̂2,div.

7. Conclusions. We have analyzed preconditioners of Schur complement and augmented type
for saddle point systems arising from mixed finite element Galerkin discretizations of second-order
elliptic PDEs with random, lognormally distributed coefficients. We suggested improvements to
mean-based preconditioners based on best Kronecker product approximation. Spectral inclusion
bounds for the preconditioned Galerkin matrix reveal that none of the preconditioners are optimal
with respect to d, the degree of polynomials used to construct Sd or the standard deviation σG

of the underlying Gaussian random field. However, the Kronecker product preconditioners P̂1 and
P̂1,div are far more robust with respect to those parameters than P̂0 and P̂0,div. The augmented
preconditioners yield lower minres iteration counts than the Schur complement preconditioners. On
the other hand, the Schur complement preconditioners are parameter-free, and require only a fast
solver for deterministic elliptic problems. The augmented preconditioners contain a parameter which
needs tuning and rely on more specialised multigrid techniques.

Uncertainty quantification is becoming an increasingly important aspect of mathematical mod-
elling. However, the study of efficient linear algebra techniques for the systems of equations that arise
from stochastic mixed finite element methods is in its infancy. Motivated by deterministic saddle
point preconditioners, this work highlights a need for more sophisticated solution strategies.
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[9] M. K. Deb, I. M. Babuška, and J. T. Oden, Solution of stochastic partial differential equations using Galerkin

finite element techniques, Comput. Methods Appl. Mech. Engrg., 190 (2001), pp. 6359–6372.
[10] H. Elman, D. Silvester, and A. Wathen, Finite Elements and Fast Iterative Solvers, Oxford University Press,

Oxford, 2005.
[11] O. G. Ernst, C. E. Powell, D. J. Silvester, and E. Ullmann, Efficient solvers for a linear stochastic Galerkin

mixed formulation of diffusion problems with random data, SIAM J. Sci. Comput., 31 (2009), pp. 1424–1447.
[12] O. G. Ernst and E. Ullmann, Stochastic Galerkin matrices, To appear in SIAM J. Matrix Anal. Appl., 2009.
[13] P. Frauenfelder, C. Schwab, and R. A. Todor, Finite elements for elliptic problems with stochastic coeffi-

cients, Comput. Methods Appl. Mech. Engrg., 194 (2005), pp. 205–228.
[14] A. Freeze, A stochastic-conceptual analysis of one-dimensional groundwater flow in nonuniform homogeneous

media, Water Resour. Res., 11 (1975), pp. 725–740.
[15] D. G. Furnival, H. C. Elman, and C. E. Powell, H(div) preconditioning for a mixed finite element formula-

tion of the stochastic diffusion problem, Tech. Report CS-TR-4918, University of Maryland Department of
Computer Science, 2008. To appear in Math. Comp., 2009.
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