Post processing for stochastic parabolic partial differential equations

Lord, Gabriel and Shardlow, Tony

2006

MIMS EPrint: 2006.3

Manchester Institute for Mathematical Sciences
School of Mathematics
The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary
School of Mathematics
The University of Manchester
Manchester, M13 9PL, UK

ISSN 1749-9097
POST PROCESSING FOR STOCHASTIC PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS

GABRIEL J LORD1 AND TONY SHARDLOW1,\textdagger

Abstract. We investigate the strong approximation of stochastic parabolic partial differential equations with additive noise. We introduce post-processing in the context of a standard Galerkin approximation, although other spatial discretisations are possible. In time, we follow [18] and use an exponential integrator. We prove strong error estimates and discuss the best number of post-processing terms to take. Numerically, we evaluate the efficiency of the methods and observe rates of convergence. Some experiments with the implicit Euler–Maruyama method are described.

Key words. Stochastic exponential integrator, post-processing, numerical solution of stochastic PDEs.

AMS subject classifications. 60H15, 65M12, 65M15, 65M60

1. Introduction. We consider the numerical approximation of the stochastic evolution equation

\[du = \left[\Delta u + F(u) \right] \, dt + dW(t), \quad \text{given} \quad u(0) = u_0, \quad (1.1) \]

with periodic boundary conditions on \([0, 2\pi]\), where \(W(t)\) is a \(Q\) Wiener process [3] on \(L^2(0, 2\pi)\) and \(F\) is nonlinear (precise assumptions are given in §3.1). Suppose that \(\phi_n\) are eigenvectors of the Laplacian \(\Delta\) with periodic boundary conditions, so that \(\Delta \phi_n = -n^2 \phi_n, \, n \in \mathbb{Z}\). We assume that \(Q\) has eigenfunctions \(\phi_n\) with corresponding eigenvalues \(\lambda_n \geq 0\), in which case

\[W(t) = \sum_{n \in \mathbb{Z}} \lambda_n^{1/2} \phi_n \beta_n(t), \quad (1.2) \]

for independent Brownian motions \(\beta_n\). We do not consider the existence of solutions to (1.1) here, instead we call on [3]. We will investigate the effect on numerics of the spatial regularity of the noise, determined from the decay of \(\lambda_n\).

There is a growing literature on numerical methods for stochastic PDEs and the majority of these analyse convergence in the strong or root mean squared sense. Finite difference approximations have been examined by a number of authors, see for example [23], [11], [12], [4] and finite element methods have also been considered, e.g. [27]. Galerkin approximations and strong Taylor schemes were considered in [10] with a scalar Wiener process. Strong convergence of the implicit Euler–Maruyama method was investigated in [16]. A more general analysis is found in [14], which considers different types of spatial discretizations (Galerkin as well as collocation, finite differences, finite elements, and wavelet based schemes) for similar forms of noise considered here. [22] analyses convergence and complexity through the number of random samples of the Wiener process. Spatially smooth noise is considered in [18] and [24] and these papers also consider Fourier based spatial discretizations. In [24], a Taylor based discretization is taken and efficient methods for approximating the

1Department of Mathematics, Heriot-Watt University, Edinburgh EH14 4AS, UK, gabiell@ma.hw.ac.uk
2School of Mathematics, Oxford Road, University of Manchester M13 9PL, UK, shardlow@maths.man.ac.uk
\textdaggerSupported in part by EPSRC grant GR/R78725/01.
Wiener process are considered. In [18] strong convergence of an exponential integrator (see also [21]) is examined and we consider this scheme further in this paper, see §3.

The purpose of this paper is to study Galerkin post processing methods for (1.1), prove their convergence in the strong sense and evaluate their efficiency. §2 is an introduction to post-processing methods for deterministic PDEs. §3 describes our Galerkin post processing scheme and §3.1 a theorem on the convergence of the method. §4 investigates the numerical behaviour of the method for the stochastic Allen-Cahn equation. We evaluate the efficiency of the methods, compare the rates of convergence to those predicted by the theorem, and illustrate numerically that post-processing is efficient for other time-stepping algorithms by experimenting with implicit Euler-Maruyma. We summarise our results and conclude in §5. The proof of the theorem is given in §6, with the proof of two lemmas left to the Appendix.

2. A review of deterministic post processing. Post-processing methods originate from analytical results on inertial manifolds for PDEs, see for example [6], where it can be shown that the dynamics of infinite dimensional PDEs converge to a finite dimensional system in large time. Typically, a graph \(\Phi \) is obtained that “enslaves” the high Fourier modes (fine scale dynamics) to a finite number of low Fourier modes (large scale dynamics). For example, if \(P \) denotes the projection onto the first \(N \) Fourier modes and \(u = p + q = Pu + (I-P)u \), we can write the deterministic PDE

\[
\begin{align*}
 u_t &= \Delta u + F(u) & p_t &= \Delta p + PF(p + q), & q_t &= \Delta q + (I-P)F(p + q).
\end{align*}
\]

The dynamics on the inertial manifold can be re-written as

\[
\begin{align*}
 p_t &= \Delta p + PF(p + q), & q(t) = \Phi(p).
\end{align*}
\]

Numerically the nonlinear Galerkin methods, also called approximate inertial manifolds (AIM) methods, make an approximation to the graph. In these methods, the evolution on a coarse mesh (i.e., low Fourier modes) uses information from the fine scale (i.e., high modes) at each time step, where a simpler form of equation is solved.

To deal with deterministic PDEs with non-smooth initial data, long transients or highly oscillatory time dependent forcing, He and Mattheij [26] introduced a dynamic form of post-processing, where the following system is approximated

\[
\begin{align*}
 p_t &= \Delta p + PF(p), & q_t &= \Delta q + (1-P)F(p).
\end{align*}
\]

It extends the approach of [7], where a fine mesh solution is found at the end of the computations. For the dynamic post-processing approach, both the coarse and fine mesh approximations are evolved in time and, unlike a traditional approximate inertial manifold approach, there is no communication from fine to coarse mesh until the end of the computation. Indeed, this communication was one of the main reasons that the AIM approach was computationally less efficient than a standard Galerkin method; see [7, 8].

He and Mattheij [26] discretized the PDEs in space by a Galerkin method and in time by implicit Euler and examined stability and convergence of the scheme and propose this as a computationally more efficient method. In [19] the post-processing method is examined from a truncation analysis point of view. From a perturbation expansion for the high modes and by keeping terms to different orders, they obtain systems that correspond to the post-processed Galerkin method and this yields convergence theory. Furthermore, from numerics based on Burgers equation with highly oscillatory forcing, they show that post-processing methods are more efficient and
have an improved rate of convergence. These results suggest that post-processing may be advantageous for a stochastically forced PDE.

Although inertial manifolds have been shown to exist for stochastic PDEs [2], we do not attempt to approximate this directly here. Instead we base our method on the post-processing approaches of [26] and [19].

3. Numerical Scheme. We will consider a Fourier based Galerkin discretization, although other spatial discretizations are possible. The time discretization may be thought of as a stochastic version of an exponential integrator proposed by [17]; for a review of these methods in the deterministic case, see [20]. In the stochastic context such schemes are considered in [18, 21] and related schemes by [25, 15] which are of the exponential time differenting type.

We describe our numerical scheme for \((1.1)\). Represent \(u(t)\) as a Fourier series

\[u(t) = \sum_n u_n(t)\phi_n \]

and obtain the infinite system of coupled equations

\[u_n(t) = e^{-tn^2}u_n(0) + \int_0^t e^{-(t-s)n^2} F_n(u(s)) \, ds + \int_0^t e^{-(t-s)n^2} \lambda_n^{1/2} \, d\beta_n(s), \tag{3.1} \]

where \(F_n\) is the \(n\)th component of \(F\), so that \(F(u) = \sum_n F_n(u)\phi_n\). Let \(\Delta t > 0\) denote the time step and \(N\) the size of the Galerkin truncation. Consider the discretization of \((1.1)\) at times \(t_k = k\Delta t\) given by

\[u_n^N(t_{k+1}) = e^{-\Delta t n^2} \left(u_n^N(t_k) + \Delta t F_n(u^N(t_k)) + \lambda_n^{1/2} \Delta B_{k,n} \right), \tag{3.2} \]

where \(|n| \leq N\), the noise terms \(\Delta B_{k,n} = \beta_n(t_{k+1}) - \beta_n(t_k)\), and initial data \(u_n^N(0) = u_n(0)\). The relationship between \((3.2)\) and \((3.1)\) is quite obvious when we iterate \((3.2)\): for \(t = k\Delta t\),

\[u_n^N(t) = e^{-tn^2}u_n^N(0) + \sum_{k=0}^{\lfloor t/\Delta t \rfloor - 1} e^{-(t-\Delta t)n^2} \left(\Delta t F_n(u^N(t_k)) + \lambda_n^{1/2} \Delta B_{k,n} \right) \tag{3.3} \]

(no terms in the sum for \(0 \leq t < \Delta t\)). This approximation has been studied in detail in [18] for Gevrey (exponentially smooth) noise.

We study a generalisation of this method, which incorporates post-processing terms and flexibility in the approximation of \(W(t)\). The generalised method has the following form: for \(|n| \leq N\),

\[u_n^N(t_{k+1}) = e^{-n^2\Delta t} \left(u_n^N(t_k) + \Delta t F_n(u^N(t_k)) + 1_{\{n| \leq N_w\}} \lambda_n^{1/2} \Delta B_{k,n} \right), \tag{3.4} \]

with initial data \(u_n^N(0) = u_n(0) = u_{0,n}\), where \(1_X\) equals 1 if \(X\) holds, 0 otherwise. The constant \(N_w\) describes the number of modes used to approximate \(W(t)\); this is the first generalisation and we will show the advantages in taking \(N_w < N\) in certain applications. As in [18], the analysis depends on an interpolant of \(u_n^N(t_k)\) in time: let

\[u_n^N(t) = e^{-n^2t}u_n^N(0) + \sum_{k=0}^{\lfloor t/\Delta t \rfloor - 1} e^{-(t-\Delta t)n^2} \left(\Delta t F_n(u^N(t_k)) + \lambda_n^{1/2} 1_{\{n| \leq N_w\}} \Delta B_{k,n} \right), \tag{3.5} \]

and note that the two definitions of \(u_n^N(t_k)\) agree.
Now we introduce post-processing. Given knowledge of u^N the following are efficiently computed
\[q^n_N(t_{k+1}) = e^{-n^2\Delta t} \left(q^n_N(t_k) + \Delta t \mathbf{1}_{|n| \leq N_p} F_n(u^N(t_k)) + \lambda_n^{1/2} \mathbf{1}_{|n| \leq N_w} \Delta B_{k,n} \right), \] (3.6)
with initial data $q^n_N(0) = u_n(0)$ for $N < |n| \leq N_p$, where N_p describes the number of nonlinear terms. Again in the analysis §6, we use an interpolant
\[q^n_N(t) = e^{-n^2 t} q^n_N(0) + \sum_{k=0}^{|t/\Delta t|-1} e^{-(t-k\Delta t)} \left(\Delta t \mathbf{1}_{|n| \leq N_p} F_n(u^N(t_k)) + \lambda_n^{1/2} \mathbf{1}_{|n| \leq N_w} \Delta B_{k,n} \right). \] (3.7)
We seek to estimate the error in approximating $u(t)$ by $u^N(t) + q^N(t)$, where $u^N = \sum_{|n| \leq N} \phi_n u^N_n$ and $q^N = \sum_{N < |n| \leq \max\{N_p, N_w\}} \phi_n q^N_n$, and in particular to understand the best choice of N_u and N_p.

3.1. Statement of Main Theorem.

Let $\| \cdot \|$ denote the standard $L^2(0,2\pi)$ norm. Denote the $H^m(0,2\pi)$ Sobolev norm for $u = \sum_n u_n \phi_n$ by
\[\|u\|_m = \|(I - \Delta)^{m/2} u\| = \left(\sum_{n \in \mathbb{Z}} (1 + n^2)^m u_n^2 \right)^{1/2}. \]
We make the following assumption of f and Q:

Assumption 3.1. For $u_1, u_2, u \in L^2(0,2\pi)$, for some constant K_0 and some $m, r \geq 0$,
\[\|F(u_1) - F(u_2)\|_r \leq K_0 \|u_1 - u_2\|_r, \] (3.8)
\[\|F(u)\|_r \leq K_0 (1 + \|u\|_r) \] (3.9)
and
\[\|F(u_1) - F(u_2)\|_m \leq K_0 \|u_1 - u_2\|_m, \] (3.10)
\[\|F(u)\|_m \leq K_0 (1 + \|u\|_m). \] (3.11)

There exists a constant K_1 such that for $u \in L^2(0,2\pi)$ and $\delta, \delta_1, \delta_2 \in H^m(0,2\pi)$,
\[\|dF(u)\delta\|_m \leq K_1 \|\delta\|_m, \] (3.12)
\[\|d^2 F(u)(\delta_1, \delta_2)\|_m \leq K_1 \|\delta_1\|_m \|\delta_2\|_m. \] (3.13)

The covariance Q of $W(t)$ satisfies $\text{Tr}(I - \Delta)^\gamma Q < \infty$; i.e.,
\[\sum_{n \in \mathbb{Z}} (1 + n^2)^\gamma \lambda_n < \infty. \] (3.14)

We have introduced three regularity parameters: γ describes regularity of the noise; r gives the regularity of the solution $u(t)$; m indicates the norm for our error analysis.

Theorem 3.2. Let $u_0 \in H^2(0,2\pi)$, $m < \min\{r, 2\}$, $0 \leq r \leq \gamma + 1$ and $\gamma > -1$. Consider $\Delta t \to 0$ with $\Delta t N^2 = \nu$. For each $T > 0$, there exists $K > 0$ such that
\[\left(\mathbb{E} \left[\sup_{0 < t_k \leq T} \|u(t_k) - u^N(t_k) - q^N(t_k)\|_m^2 \right] \right)^{1/2} \]
\[\leq K \left(\Delta t + N^{-1-\gamma} + N_p^{-2-r+m} + N_w^{-1-\gamma+m} \right), \]
where $u^N = \sum_{|n| \leq N} \phi_n u^N_n$ and $q^N = \sum_{N < |n| \leq \max\{N_p, N_w\}} \phi_n q^N_n$ with components defined by (3.5)–(3.7).

Proof. This is given in §6. □

Below we consider convergence in N, and simply note that numerically we observe convergence in Δt consistent with Theorem 3.2. We state two corollaries (using that $\Delta t N^2 = \nu$). The first describes convergence for the method (3.2) for non-smooth problems (extending work done in [18]). The second gives the values N_w, N_p that yield the best convergence rates.

Corollary 3.3 (no postprocessing). Under the assumptions of Theorem 3.2 with $N = N_w = N_p$,

$$
\left(\mathbb{E}\left[\sup_{0 < t_k \leq T} \|u(t_k) - u^N(t_k) - q^N(t_k)\|^2 \right] \right)^{1/2} \leq K \left(N^{-2} + N^{-2-r+m} + N^{-1-\gamma+m} \right).
$$

For example, with $\gamma = -1/2$ (space-time white noise), the $L^2(0,2\pi)$ error (case $m = 0$) converges like $N^{-1/2}$. This is consistent with related results in the literature (e.g., [13],[16]). For Gevrey noise and a smooth non-linearity, the parameters r and γ may be chosen arbitrarily large and we recover the result of [18]: for any $z > 0$, there exists a constant K such that

$$
\mathbb{E}\left[\sup_{0 < t_k \leq T} \|u(t_k) - u^N(t_k)\|_1 \right] \leq K (N^{-z} + \Delta t).
$$

This is faster convergence than any polynomial, although not the exponential rate found [5] for the deterministic case.

Now we turn to post-processing.

Corollary 3.4 (post processing). Let the assumptions of Theorem 3.2 hold.

1. If $\gamma \geq 1$, then

$$
\left(\mathbb{E}\left[\sup_{0 < t_k \leq T} \|u(t_k) - u^N(t_k) - q^N(t_k)\|^2 \right] \right)^{1/2} \leq K N^{-2}
$$

with $N_p = N$ and $N_w = \lceil N^{2/(1+\gamma-m)} \rceil$.

2. If $-1 < \gamma < 1$, then

$$
\left(\mathbb{E}\left[\sup_{0 < t_k \leq T} \|u(t_k) - u^N(t_k) - q^N(t_k)\|^2 \right] \right)^{1/2} \leq K N^{-1-\gamma}
$$

with $N_p = N$ and $N_w = \lceil N^{(1+\gamma)/(1+\gamma-m)} \rceil$.

These choices of N_p and N_w provide the best convergence rate.

There are a number of issues to consider: the rate of convergence, the constant for this rate, and the efficiency of the scheme. We can improve the rate of convergence by choice of N_w and there are two cases to consider. For smooth noise $\gamma \geq 1 + m$, the optimal value is $N_w < N$, which saves computing random numbers for many of the components u^N_n. This has been used with good effect in [24] for a Gevrey smooth noise. Note that $N_w \to 1$ as $\gamma \to \infty$. In practise, it is important for $N_w \to \infty$ as we ask for more accuracy and to take to enough modes to resolve the noise.

For non-smooth noise ($\gamma < 1$), the optimal $N_w > N$, which implies that the post-processing corrections q^N_n are Gaussian processes

$$
g^N_n(t_{k+1}) = e^{-n^2 \Delta t} \left(g^N_n(t_k) + \lambda^{1/2} \mathbf{1}_{|n| \leq N_w} \Delta B_{k,n} \right). \tag{3.15}
$$
Thus, computing the post-processing update is straightforward and cheap. To compare solutions for a single realisation of $W(t)$, q^N_n must be found by time stepping. For weak approximation, it will be more efficient to compute and sample from the Gaussian distribution at the final time.

Our analysis predicts no improvement in the rate of convergence from post-processing the nonlinear term. This contrasts with results on post-processing in the deterministic case, where there is a gain in the rate of convergence [7, 8] (though this gain is often out weighed by extra computational cost).

4. Numerics. Consider the one-dimensional Allen-Cahn equation with noise:

$$du = \left[\alpha u_{xx} + u - u^3\right] dt + dW(t), \quad u(0) = u_0,$$

with periodic boundary conditions on $[0, 2\pi)$. For numerical calculations, we take the diffusion coefficient $\alpha = 1/36$. We always take noise white in time and vary the spatial regularity γ, see (3.14).

To test the numerics, “true” solutions were computed by a standard Galerkin approximation with $N = 2^{11}$ modes and a time step $\Delta t = 5 \times 10^{-6}$. To avoid aliasing errors, the nonlinear term was computed with $2N$ terms (more than the optimal number of terms suggested by the 2/3 rule [1]). For a discussion of the role of aliasing in post-processing (in the deterministic case) see [9].

Sample “true” solutions are plotted in Fig. 4.1, this shows (left) the effect of different spatial regularity in real space and (right) the corresponding log log plot in Fourier space. In real space, the solutions are smoother as the regularity of the noise increases. This is confirmed by the decay of the Fourier modes and we see numerically that $r = \gamma + 1$, consistent with the results of Lemma A.1. Essentially we gain a derivative on the regularity of the solution over the noise.

Let \hat{N} denote a parameter for post-processing (either $2N$, $4N$, $8N$, or N^2 in experiments) then these “true” solutions were used to compute errors with smaller values of N for the following approximations:

Galerkin: A standard Galerkin approximation, from solving (3.4) with $N_w = N$.

Fig. 4.1. Plot (left) of “true” solutions at time $t = 1$ for $\gamma = -0.5, 0, 0.5, 1.0$ for one realization of the noise. Plot (right) is the corresponding log log plot of the Fourier coefficients at time $t = 1$ which shows that for $\gamma > 0$ the solutions are in a Sobolev space H^r with $r = 0.5, 1, 1.5, 2$.

PP Full: A full post-processed solution, from solving (3.4) and (3.6) with \(N_w = N_p = \bar{N} \).

PP Noise: A post-processed solution on noise only, from solving (3.4) and (3.15) with \(N_p = N, N_w = \bar{N} \).

We examine the rate of convergence and efficiency by a mean cpu time. From a practical point of view, plots of cpu time versus error can be interpreted in two ways: either fix a desired accuracy and see how long it would take to achieve, or fix a time and see how accurate a solution can be computed in that time. The expectation is computed from 10 samples and we examine the root mean square of the error at time \(t = 1\) in an appropriate norm. Normally we take the \(L^2\) norm \((m = 0)\) or \(H^1\) norm \((m = 1)\).

On the plots below we draw a line with slope equal to the predicted rate of convergence for Galerkin. We also report in the legend the observed slope from the data for the rate of convergence.

Fig. 4.2. Space-time white noise (a) \(L^2\) error and (b) \(H^1\) error showing (top) rate of convergence and (below) plot of efficiency. No convergence is seen in \(H^1\).

We examine the rates of convergence and computational efficiency for \(W(t)\) defined by (1.2) with \(\lambda_n = (1 + n^2)^{-\gamma} |n|^{-1}, n \neq 0\) and \(\lambda_0 = 0\). We consider \(\gamma = 1/2\) (space time white noise), \(\gamma = 0\) (\(L^2\) noise), and \(\gamma = 1/2, 1, 2\) (\(H^\gamma\) noise). Our predictions for the numerics are based on Theorem 3.2 where, motivated by Lemma A.1, we assume that \(r = \gamma + 1\).

4.1. Space-time white noise: \(\gamma = -\frac{1}{2}\)

We observe in Fig 4.2(top) the theoretically predicted rates of convergence for Galerkin: the \(L^2\) error decays like \(N^{-1/2}\) and there is no convergence for \(H^1\) error.

Post processing is not expected to improve the rate of convergence in the \(L^2\) norm, as \(N_w = N\) in Corollary 3.4. With \(\bar{N} = 2N\), this is supported by computations: see Fig 4.2 (a) (top) where the post-processing has no beneficial effect and the observed rate is the same as Galerkin. However, there is an improvement in the error constant and for \(N > 32\) modes post-processing is more efficient; see Fig 4.2 (a) (bottom). Taking this further, Fig 4.3 shows (a) PP Full and PP Noise with \(\bar{N} = 8N\) and (b) PP Full with \(\bar{N} = N^2\). The numerics predict a rate of convergence faster than the theoretical one. This is encouraging, although the resolution is coarse and the theoretical rate may reappear for larger \(N\).
Fig. 4.3. Plots of L^2 error for space time white noise. (a) $\hat{N}N$ and (b) $\hat{N} = N^2$. In (b) we see a rate of convergence of N^{-2} for PP Full and PP Noise, as indicated by the reference line.

We clearly see the computational advantage of PP Noise compared to PP Full and Galerkin in Fig 4.3 (a) bottom. Post-processing on the noise terms only is far more efficient.

Consider the $H^{1/4}$ error where we expect post processing to improve the rate of convergence: From Corollary 3.4, the optimal $N_w = N^2$ with convergence rate N^{-1}. The improved rate is observed in Fig 4.4.

Fig. 4.4. Plots of $H^{1/4}$ error with $\hat{N} = N^2$. The post-processed solutions converge like N^{-1} in accordance with theory (line with slope -1 is also plotted).

4.2. L^2 noise. This is similar to white noise: for Galerkin, the L^2 error decays like N^{-1}, which is observed in Fig 4.5 (a) and (b), and the H^1 error does not converge. In theory, post-processing offers no improvement. In practise, there is an improvement in the error constant and an improvement in efficiency for $\hat{N} = 2N$ and further improvement for $\hat{N} = 8N$. See Fig 4.5(a) and (b).

4.3. $H^{1/2}$ noise. Corollary 3.3 predicts convergence of the L^2 error like $N^{-3/2}$ and the H^1 error like $N^{-1/2}$ for Galerkin and these rates are observed in Fig 4.6 (a)
2.1 and (b). With post-processing, the optimal rate for the L^2 error is not changed and the H^1 error is like $N^{-3/2}$ if $N_w = N^3$. It is impractical to calculate with N^3 post processing terms for large N, and instead we look at $N = 2N, 4N, 8N$. Fig 4.6 shows the effect of increasing \hat{N} for L^2 error (left) and H^1 error (right) with \hat{N} increasing top to bottom. For L^2 and H^1 errors, increasing \hat{N} improves the error and seems to improve the rate of convergence – although this is not expected from the analysis for L^2 and we are a long way from taking the predicted N^3 modes for H^1. We clearly see that PP Noise is the most efficient method.

4.4. H^1 noise. Corollary 3.3 predicts that the Galerkin L^2 error decays like N^{-2} and H^1 error decays like N^{-1} as observed in Fig 4.7. This is the limiting case in Corollary 3.4, where we find N^{-2} convergence by taking $N_w = N$ for L^2 error and $N_w = N^2$ for H^1 error; the solution is smooth in space and accuracy is now limited by time stepping. It is impractical to calculate with N^2 post processing terms for large N, and instead we look at $\hat{N} = 8N$: Fig 4.7 shows (a) the L^2 error and (b) the H^1 error. The post-processing methods give smaller errors and are more efficient, in particular PP Noise.

4.5. H^2 noise. The optimal number of modes is $N_m = N^{2/3}$ for L^2 error, giving N^{-2} convergence. We see in Fig 4.8 (a) that the L^2 error is converging with this rate as does the H^1 error in (b) – although only $\hat{N} = N^{2/3}$ modes are used rather than the theoretical optimum value N.

4.6. Post-processing implicit Euler-Maruyama. Post-processing is effective for other time stepping algorithms. In Fig 4.9, we plot results of experiments with the implicit Euler-Maruyama scheme. We take $\hat{N} = 8N$ and plot (a) the L^2 error for white noise, (b) the L^2 error with L^2 noise, (c) L^2 error with H^1 noise, and (d) H^1 error with H^1 noise. Again PP Noise is the most efficient of the methods and there appears to be an improvement in the rate of convergence in addition to the constant. These trends are identical to those found in Theorem 3.2 and shown in Fig 4.2–Fig 4.8.

5. Conclusions. Theorem 3.2 shows that post-processing can improve the rate of convergence over a standard Galerkin method for stochastic PDEs. For non-smooth
For $H^{1/2}$ noise, we examine the number of post-processing terms \hat{N}. In (a) (b) we take $\hat{N} = 2N$, (c) (d) $\hat{N} = 4N$, (e) (f) $\hat{N} = 8N$ with L_2 error (left) and H^1 error (right). For each case, we show plots of error against N (above) and cpu time (below).
Fig. 4.7. For H^1 noise with $\tilde{N} = 8N$, we plot (a) L^2 error and (b) H^1 error.

Fig. 4.8. For H^2 noise, we see (a) the predicted rate of convergence for the L^2 error with the optimal value $\tilde{N} = N^{2/3}$ and (b) the same convergence rate is achieved for the H^1 error, with $\tilde{N} = N^{2/3}$ rather than the theoretical rate of $N_w = N$.

forcing, the best number of modes is greater than the standard Galerkin method. For smooth noise, as observed in [24], the optimal number of modes is smaller. With the smooth nonlinearity in (4.1), it is flexibility in the number of modes that approximate $W(t)$ that is key. This was confirmed in numerics. We found post-processing on the noise improves on the convergence and efficiency of the standard Galerkin approximation and that the contribution from the (smooth) nonlinearity in the post-processing is negligible. This improvement in efficiency over the standard Galerkin method holds true for all spatial regularities of the noise that we tested.

It is often computationally prohibitive to use the number of modes suggested by the theorem. From a practical point of view, improvements were noted with $N_w = 2N$ even when the theoretical optimum number of nodes is $N_w = N^2$. For non-smooth noise, we found numerically that taking $N_w = 8N$ gave a good compromise between the extra effort involved and accuracy. Indeed it seems we get a rate of convergence not predicted by the theory.

Finally, although our analysis is for the scheme (3.2), this approach works equally well for other time-stepping methods, such as the implicit Euler–Maruyama time stepping scheme. Our presentation is for a Galerkin based approximation, however post-processing can easily be extended to other spatial discretizations using, for example, two grids.
Fig. 4.9. Post-processing for the implicit Euler-Maruyama method. In (a) white noise and L^2 error, (b) L^2 noise and L^2 error, (c) H^1 noise and L^2 error, (d) again H^1 noise but with H^1 error.

Acknowledgements. We are grateful to Yubin Yan for helpful discussions on this work. We would also like to thank Edriss Titi and Jacques Rougemont for their comments early on in this work.

6. Proof of main Theorem. We prove Theorem 3.2 by estimating

$$E \left[\sup_{0 \leq t \leq t'} \| u(t_j) - u^N(t_j) - q^N(t_j) \|_m^2 \right]$$

for $0 \leq t' \leq T$ and applying Gronwall’s Lemma. To estimate terms, we use a generic constant K which varies between instances but is independent of Δt and N (it may depend on (1.1) and the length of time integration T and constant ν). Consider the difference of the variation of constants formulae (3.1),(3.5), and (3.7). Split into Fourier modes with $|n| \leq N_p$ and $|n| > N_p$ and by nonlinear and noise terms.
Nonlinear Terms: modes $|n| \leq N_p$.

$$
E \sup_{0 \leq t_j \leq t_i} \sum_{|n| \leq N_p} (1 + n^2)^m \left| \sum_{k=0}^{j-1} \int_{t_k}^{t_{k+1}} e^{-(t_j - t_k)^2 n^2} (e^{(s - t_k)^2 n^2} F_n(u(s)) - F_n(u^N(t_k))) ds \right|^2
$$

$$
= \sum_{|n| \leq N_p} E \left[\sup_{0 \leq t_j \leq t_i} \sum_{k=0}^{j-1} \int_{t_k}^{t_{k+1}} e^{-(t_j - t_k)^2 n^2} (1 + n^2)^{m/2} \left(F_n(u(s)) - F_n(u(t_k)) \right) \right]^2
$$

where the four terms NL_i are analysed below.

The first term Fix t_j and consider $k \leq j - 1$. Define

$$
L_{k,n} = \int_{t_k}^{t_{k+1}} e^{-(t_j - t_k)^2 n^2} (1 + n^2)^{m/2} \left(F_n(u(s)) - F_n(u(t_k)) \right) ds,
$$

and let

$$
\text{NL}' = \sum_{|n| \leq N_p} E \left[\sum_{k=0}^{j-1} L_{k,n} \right]^2. \quad (6.1)
$$

Write $U_k = u(t_k)$ and $u(s) = u(t_k) + \delta_s$ for $t_k \leq s < t_{k+1}$, then

$$
F_n(u(s)) - F_n(u(t_k)) = dF_n(U_k) \delta_s + \int_0^1 \int_0^1 d^2 F_n(U_k + \xi \delta_s)(\delta_s, \delta_s) d\xi d\eta.
$$

In the following argument we neglect the remainder term, which can be dealt with easily under (3.13). Denote by \mathcal{F}_t the filtration for the Wiener process $W(t)$. For $k > i$, under (3.12), the cross terms in (6.1)

$$
\sum_{|n| \leq N_p} \mathbb{E} L_{k,n} L_{i,n} = \sum_{|n| \leq N_p} (1 + n^2)^m \mathbb{E} \left[\int_{t_k}^{t_{k+1}} e^{-(t_j - t_k)^2 n^2} \mathbb{E} \left[dF_n(U_k) \delta_s | \mathcal{F}_{t_k} \right] ds \right]
$$

$$
\times \int_{t_i}^{t_{i+1}} e^{-(t_j - t_i)^2 n^2} dF_n(U_i) \delta_s ds + \text{higher order terms}
$$

$$
\leq K \Delta t^4,
$$

because $dF_n(U_i) \delta_s$ is \mathcal{F}_{t_k} measurable and $\left\| \mathbb{E} \left[dF(U_k) \delta_s | \mathcal{F}_{t_k} \right] \right\|_m \leq K \Delta t$. As

$$
\left[\int_{t_k}^{t_{k+1}} \phi(s) ds \right]^2 \leq (t_{k+1} - t_k) \int_{t_k}^{t_{k+1}} \phi(s)^2 ds, \text{ for } \phi \in L^2(0, T),
$$

$$
\sum_{|n| \leq N_p} \mathbb{E} L_{k,n}^2 \leq \Delta t \sum_{|n| \leq N_p} \int_{t_k}^{t_{k+1}} \mathbb{E} \left[e^{-(t_j - t_k)^2 n^2} (1 + n^2)^{m/2} dF_n(U_k) \delta_s \right]^2 ds + \text{h.o.t.}
$$
Here
\[
\sum_{|n| \leq N_p} \int_{t_k}^{t_{k+1}} \mathbb{E} \left[e^{-(t_j-t_k)n^2}(1+n^2)^{m/2}dF_n(U_k)\delta_s \right]^2 ds
\leq \int_{t_k}^{t_{k+1}} \mathbb{E} \left[\|dF_n(U_k)\|_m \cdot \|\delta_s\|_m^2 \right] ds.
\]
Because \(\mathbb{E}\|u^N(t) - u^N(s)\|_m^2 \leq K|t-s|\|u_0\|_m^2 \) and (3.12) holds, we conclude that
\[
\sum_{|n| \leq N_p} \int_{t_k}^{t_{k+1}} \mathbb{E} \left[e^{-(t_j-t_k)n^2}(1+n^2)^{m/2}dF_n(U_k)\delta_s \right]^2 ds \leq K\Delta t^2.
\]
Thus, we may estimate
\[
NL' \leq \sup_{0 \leq t_j \leq t'} \sum_{|n| \leq N_p} \left\{ \sum_{k=0}^{j-1} \mathbb{E}\left[L_{k,n} \right]^2 + \sum_{k,i=0, k \neq i}^{j-1} \mathbb{E}L_{k,n}L_{i,n} \right\} \leq K\Delta t^2.
\]
Apply the Doob martingale inequality, to get
\[
\mathbb{E} \left[\sup_{0 \leq t_j \leq t'} NL'_1 \right] \leq 4K\Delta t^2.
\]
The second term
\[
NL_2 = \sum_{|n| \leq N_p} (1+n^2)^m \mathbb{E} \left[\sup_{0 \leq t_j \leq t'} \sum_{k=0}^{j-1} \int_{t_k}^{t_{k+1}} e^{-(t_j-t_k)n^2} \right.
\]
\[
\left. \times \left(|F_n(u(t_k)) - F_n(u^N(t_k) + q^N(t_k))| \right) ds \right]^2
\leq \int_0^{t'} \sum_{|n| \leq N_p} \mathbb{E} \left[\sup_{0 \leq t_k \leq t} (1+n^2)^m |F_n(u(t_k)) - F_n(u^N(t_k) + q^N(t_k))|^2 \right] dt.
\]
Using (3.10),
\[
NL_2 \leq K \int_0^{t'} \mathbb{E} \left[\sup_{0 \leq t_k \leq t} \|u(t_k) - u^N(t_k) - q^N(t_k)\|_m^2 \right] dt.
\]
The third nonlinear term
\[
NL_3 = \sum_{|n| \leq N_p} (1+n^2)^m \mathbb{E} \left[\sup_{0 \leq t_j \leq t'} \sum_{k=0}^{j-1} \int_{t_k}^{t_{k+1}} e^{-(t_j-t_k)n^2} \right.
\]
\[
\left. \times \left(|F_n(u^N(t_k) + q^N(t_k)) - F_n(u^N(t_k))| \right) ds \right]^2
\leq \sum_{|n| \leq N_p} (1+n^2)^m \mathbb{E} \left[\sup_{0 \leq t_j \leq t'} |F_n(u^N(t_j) + q^N(t_j)) - F_n(u^N(t_j))| \right.
\]
\[
\left. \times \sum_{k=0}^{j-1} \int_{t_k}^{t_{k+1}} e^{-(t_j-t_k)n^2} ds \right]^2
\leq \sum_{0 < |n| \leq N_p} (1+n^2)^m \mathbb{E} \left[\sup_{0 \leq t_k \leq t'} |F_n(u^N(t_k) + q^N(t_k)) - F_n(u^N(t_k))| \frac{1}{n^2} \right]^2
\]
\[
+ \mathbb{E} \left[\sup_{0 \leq t_k \leq t'} |F_0(u^N(t_k) + q^N(t_k)) - F_0(u^N(t_k))| \right].
\]
Choose \(m \leq 2 \), then using (3.8),
\[
\text{NL}_3 \leq \sum_{|n| \leq N_p} E \left[\sup_{0 \leq t_k \leq t} (1 + n^2)^m |F_n(u^N(t_k) + q^N(t_k)) - F_n(u^N(t_k))|^2 \right]
\leq K \int_0^T E \left[\sup_{0 \leq t_k \leq t} \|q^N(t_k)\|^2 \right] dt.
\]

Finally, from Lemma A.2,
\[
\text{NL}_3 \leq K (1_{N \leq N_w} N^{2(-1-\gamma)} + N^{2(-2-r)}).
\]

The fourth nonlinear term
\[
\text{NL}_4 =
= \sum_{|n| \leq N_p} (1 + n^2)^m E \left[\sup_{0 \leq t_k \leq t} \sum_{k=0}^{j-1} \int_{t_k}^{t_{k+1}} e^{-(t_j - t_k)n^2} \left(|(e^{(s-t_k)n^2} - 1)F_n(u(s))| \right) ds \right]^2
\leq \sum_{|n| \leq N_p} (1 + n^2)^m E \left[\sup_{0 \leq s \leq t'} |F_n(u(s))|^2 \right] \sum_{k=0}^{\lfloor t/\Delta t \rfloor - 1} e^{-(t_j - t_k)n^2} K\Delta t^2 n^2.]^2.
\]

Note that for \(0 \leq \Delta t n^2 \leq \nu \)
\[
\int_{t_k}^{t_{k+1}} e^{(s-t_k)n^2} - 1) ds \leq \left(\frac{e^{\Delta t n^2} - 1}{n^2} - \Delta t \right) \leq n^{-2}(K\Delta t^2 n^2 e^{n^2\Delta t}) \leq K\Delta t^2 n^2 e^{\nu}
\]
and
\[
\sum_{k=1}^{\infty} e^{-k^2\Delta t} \leq \frac{1}{1 - e^{-n^2\Delta t}} \leq \frac{K}{n^2\Delta t}.
\]

Thus, using (3.11),
\[
\text{NL}_4 \leq K \sum_{|n| \leq N_p} (1 + n^2)^m E \left[\sup_{0 \leq s \leq t'} |F_n(u(s))|^2 \Delta t \right]^2
\leq K \Delta t^2 \left(1 + E \left[\sup_{0 \leq s \leq t'} \|u(s)\|_m \right]^2 \right).
\]

By (3.10) and Lemma A.1,
\[
\text{NL}_4 \leq K \Delta t^2.
\]

Nonlinear terms: modes \(|n| > N_p\). Consider now the tail of the expansion of \(u(t) \); i.e., the modes not included in either \(u^N \) or \(q^N \). If \(r > m \),
\[
\text{TAIL} = E \left[\sup_{0 \leq t_j \leq t'} \sum_{|n| > N_p} (1 + n^2)^m \left| \int_{t_j}^{t_{j+1}} e^{-(t_j - s)n^2} F_n(u(s)) ds \right|^2 \right]
\leq K \left(\int_0^{t'} (1 + N_p^{2(r-m)/2} e^{-(t_j - s)N_p^2} ds \right)^2 E \left[\sup_{0 \leq s \leq t'} \|F(u(s))\|_r^2 \right].
\]

By (3.9) and Lemma A.1,
\[
\text{TAIL} \leq K N_p^{2(m-2-r)}.
\]
Noise with modes $|n| \leq N_w$.

\[
\text{NOISE}_1 = E \left[\sup_{0 < t_k \leq t'} \sum_{|n| \leq N_w} (1 + n^2)^m \times \left(\sum_{k=0}^{j-1} \left(\int_{0}^{t_{k+1}} e^{-(t_j-s)n^2} \lambda_n^{1/2} d\beta_n(s) - e^{-(t-t_k)n^2} \lambda_n^{1/2} \Delta B_{k,n} \right)^2 \right) \right]
\leq \sum_{|n| \leq N_w} (1 + n^2)^m |\lambda_n| E \left[\sup_{0 < t_k \leq t'} \int_{0}^{t_j} \left(e^{-(t_j-s)n^2} - e^{-(t_j-[s/\Delta t]n)^2} \right) d\beta_n(s) \right]^2.
\]

By Doob's martingale inequality

\[
\text{NOISE}_1 \leq 4 \sum_{|n| \leq N_w} (1 + n^2)^m |\lambda_n| \int_{0}^{t'} \left(e^{-(t_j-s)n^2} - e^{-(t_j-[s/\Delta t]n)^2} \right)^2 ds
= 4 \sum_{|n| \leq N_w} (1 + n^2)^m |\lambda_n| \int_{0}^{t'} e^{-2(t_j-s)n^2} \left(1 - e^{-s([s/\Delta t]n)^2} \right)^2 ds.
\]

Note that $1 - e^{-tn^2} \leq tn^2$ for $0 \leq t \leq \Delta t$ and

\[
\int_{0}^{t'} e^{-2(t_j-s)n^2} \left(1 - e^{-s([s/\Delta t]n)^2} \right)^2 ds \leq (\Delta t n^2)^2 \int_{0}^{t'} e^{-2(t_j-s)n^2} ds \leq K \Delta t^2 n^2.
\]

Hence

\[
\text{NOISE}_1 \leq 4 \sum_{|n| \leq N_w} (1 + n^2)^m |\lambda_n| \Delta t^2 n^2
\leq K \Delta t^2 (1 + N_w^2)^{(1+m-\gamma)} \sum_{|n| \leq N_w} (1 + n^2)^\gamma |\lambda_n|
\leq K \Delta t^2 (1 + N_w^2)^{(1+m-\gamma)},
\]

under (3.14).

Noise with modes $|n| > N_w$.

\[
\text{NOISE}_2 = E \left[\sup_{0 \leq t_k \leq t'} \sum_{|n| > N_w} (1 + n^2)^m \left(\int_{0}^{t_j} e^{-(t_j-s)n^2} \lambda_n^{1/2} d\beta_n(s) \right)^2 \right]
\leq 4(1 + N_w^2)^{m-\gamma} \sum_{|n| \geq N_w} \lambda_n (1 + n^2)^\gamma \leq K N_w^2(m-1-\gamma),
\]

using (3.14).

Conclusion. We have achieved the following inequality

\[
E \left[\sup_{0 \leq t_k \leq t'} \left\| u(t_j) - u^N(t_j) - q^N(t_j) \right\|^2_m \right],
\leq K \left(\Delta t^2 + (1_{N \leq N_w} N^{2(-1-\gamma)} + N^{2(-2-r)} + N_p^{2(-2-r+m)} + \Delta t^2 N_w^{2(-\gamma+1+m)} + N_w^{2(-1-\gamma+m)} + \int_{0}^{T} E \left[\sup_{0 \leq t_k \leq t} \left\| u(t_k) - u^N(t_k) - q^N(t_k) \right\|^2 \right] dt \right).
\]
Substitute $\Delta t^2 = \nu N^{-2}$ and note $N^{2(-2-r)} \leq N^{2(-2)}$. Gronwall’s Lemma provides
\[
\mathbb{E} \left[\sup_{0 \leq t \leq t'} \| u(t) - u_N(t) - q^N(t) \|_m^2 \right] \leq K \left(N^{2(-2)} + 1_{N \leq N_w} N^{2(-1-\gamma)} + N^{2(-2-r+m)} + N^{2(-1+\gamma+m)} \right).
\]
This completes the proof of Theorem 3.2.

Appendix A. Lemmas. We collect two elementary lemmas used in the proof of the main theorem.

Lemma A.1. For $r \leq \gamma + 1$,
\[
\mathbb{E} \sup_{0 \leq t \leq T} \| u(t) \|_r^2 \leq K(1 + \| u_0 \|_r^2).
\]

Proof. Examining the nonlinear term in (3.1) under (3.9):
\[
\mathbb{E} \left[\sup_{0 \leq t \leq t'} \sum_n (1 + n^2)^{r/2} \int_0^t e^{-(t-s)n^2} F_n(u(s)) \, ds \right]^2
\leq K \int_0^{t'} \left(1 + \mathbb{E} \left[\sup_{0 \leq s \leq t} \| u(s) \|_r^2 \right] \right) dt
\]
and the noise term (modes with $n \neq 0$)
\[
\mathbb{E} \left[\sup_{0 \leq t \leq t'} \sum_{n \neq 0} (1 + n^2)^{r/2} \int_0^t e^{-(t-s)n^2} \lambda_n^{1/2} d\beta(s) \right]^2
\leq 4 \mathbb{E} \left[\sum_{n \neq 0} (1 + n^2)^{(r-\gamma)/2} \int_0^t e^{-2(t-s)n^2} (1 + n^2)^{\gamma} \lambda_n \, ds \right]
\leq \sum_{n \neq 0} (1 + n^2)^{(r-\gamma)} (1 + n^2)^{\gamma} \lambda_n
\]
using (3.14). This is finite if $r - \gamma \leq 1$, so that the Gronwall Lemma completes the proof. \qed

Lemma A.2. Under the assumptions of Lemma A.1,
\[
\mathbb{E} \sup_{0 \leq t \leq T} \| q^N(t) \|_2^2 \leq K(1 + \| u_0 \|_2^2) + \sum_{N < |n| \leq N_{s},N_w} u_{n}^2 (1 + n^2)^{2} u_{0,n}^2.
\]

Proof. We seek upper estimates on
\[
\mathbb{E} \left[\sup_{0 \leq t \leq T} \| q^N(t) \|_2^2 \right].
\]
To do this, estimate the influence of the initial data
\[
\sum_{N < |n| \leq \max N_{p},N_w} \mathbb{E} \left[\sup_{0 \leq t \leq T} | e^{-t_n n^2} u_n(0) |^2 \right] = \sum_{N < |n| \leq \max N_{p},N_w} u_{n}^2 u_{0,n}^2 \leq KN^{-4} \sum_{N < |n| \leq \max N_{p},N_w} (1 + n^2)^2 u_{0,n}^2.
\]
If \(u_0 \in H^2(0,2\pi) \), this term is bounded by \(KN^{2(-2)} \).

Now the nonlinear terms,

\[
E \left[\sup_{0 \leq t \leq T} \sum_{N<n \leq N_p} \left| \sum_{k=0}^{j-1} \int_{t_k}^{t_{k+1}} e^{-(t_j-t_k)n^2} F_n(u^N(t_k)) \right| \right]^2 \\
\leq E \left[\sup_{0 \leq t \leq T} \sum_{N<n \leq N_p} (1 + n^2)^{r} |F_n(u^N(t_k))|^2 \left| \sum_{k=0}^{j-1} \int_{t_k}^{t_{k+1}} (1 + n^2)^{-r/2} e^{-(t_j-t_k)n^2} ds \right|^2 \right] \\
\leq E \left[\sup_{0 \leq t \leq T} \left\| u^N(t) \right\|^2 \right] \left| \sum_{k=0}^{j-1} \int_{t_k}^{t_{k+1}} (1 + n^2)^{-r/2} e^{-(t_j-t_k)n^2} ds \right|^2 \\
\leq E \left[\sup_{0 \leq t \leq T} \left\| u^N(t) \right\|^2 \right] \frac{1 + N^2)^{-r}}{N^4}.
\]

This term is bounded by \(KN^{2(-r-2)} \) by applying Lemma A.1. The noise term:

\[
E \left[\sup_{0 \leq t \leq T} \sum_{N<n \leq N_w} \left| \sum_{k=0}^{j-1} \int_{t_k}^{t_{k+1}} e^{-(t_j-t_k)n^2} \lambda_n^{1/2} \Delta B_{k,n} \right| \right]^2 \\
= 4 \sum_{N<n \leq N_w} (1 + n^2)^{\gamma} \lambda_n^{1/2} \int_0^T (1 + n^2)^{-\gamma} e^{-(t_j-t_k)n^2} ds \\
\leq 4 \mathbf{1}_{N \leq N_w} N^{2(-1-\gamma)} \sum_{N<n \leq N_w} (1 + n^2)^{\gamma} \lambda_n.
\]

This completes the proof. \(\Box \)

REFERENCES

Post processing for SPDEs

