Dubrovin, Boris and Mazzocco, Marta
(2000)
*Monodromy of certain Painlevé-VI transcendents and reflection groups.*
Inventiones Mathematicae, 141 (1).
pp. 55-147.
ISSN 0020-9910

PDF
9806056-2.pdf Download (591kB) |

## Abstract

We study the global analytic properties of the solutions of a particular family of Painlevé VI equations with the parameters #=%=0, '=$\frac{1}{2}$]] and 2!=(27-1)2 with arbitrary 7, 27p]Ê. We introduce a class of solutions having critical behaviour of algebraic type, and completely compute the structure of the analytic continuation of these solutions in terms of an auxiliary reflection group in the three dimensional space. The analytic continuation is given in terms of an action of the braid group on the triples of generators of the reflection group. We show that the finite orbits of this action correspond to the algebraic solutions of our Painlevé VI equation and use this result to classify all of them. We prove that the algebraic solutions of our Painlevé VI equation are in one-to-one correspondence with the regular polyhedra or star-polyhedra in the three dimensional space.

Item Type: | Article |
---|---|

Subjects: | MSC 2010, the AMS's Mathematics Subject Classification > 20 Group theory and generalizations MSC 2010, the AMS's Mathematics Subject Classification > 33 Special functions (properties of functions as functions) MSC 2010, the AMS's Mathematics Subject Classification > 34 Ordinary differential equations |

Depositing User: | Dr Marta Mazzocco |

Date Deposited: | 11 Jan 2006 |

Last Modified: | 20 Oct 2017 14:12 |

URI: | http://eprints.maths.manchester.ac.uk/id/eprint/142 |

### Actions (login required)

View Item |