You are here: MIMS > EPrints
MIMS EPrints

2010.105: Passage-time Computation and Aggregation Strategies for Large Semi-Markov Processes

2010.105: M.C. Guenther, N.J. Dingle, J.T. Bradley and W.J. Knottenbelt (2010) Passage-time Computation and Aggregation Strategies for Large Semi-Markov Processes. Performance Evaluation.

Full text available as:

PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
749 Kb

DOI: 10.1016/j.peva.2010.10.003


High-level semi-Markov modelling paradigms such as semi-Markov stochastic Petri nets and process algebras are used to capture realistic performance models of computer and communication systems but often have the drawback of generating huge underlying semi-Markov processes. Extraction of performance measures such as steady-state probabilities and passage-time distributions therefore relies on sparse matrix–vector operations involving very large transition matrices. Previous studies have shown that exact state-by-state aggregation of semi-Markov processes can be applied to reduce the number of states. This can, however, lead to a dramatic increase in matrix density caused by the creation of additional transitions between remaining states. Our paper addresses this issue by presenting the concept of state space partitioning for aggregation.

We present a new deterministic partitioning method which we term barrier partitioning. We show that barrier partitioning is capable of splitting very large semi-Markov models into a number of partitions such that first passage-time analysis can be performed more quickly and using up to 99% less memory than existing algorithms.

Item Type:Article
Subjects:MSC 2000 > 60 Probability theory and stochastic processes
MSC 2000 > 68 Computer science
MIMS number:2010.105
Deposited By:Dr Nicholas Dingle
Deposited On:14 December 2010

Download Statistics: last 4 weeks
Repository Staff Only: edit this item