You are here: MIMS > EPrints
MIMS EPrints

2011.22: Kazhdan-Lusztig parameters and extended quotients

2011.22: Anne-Marie Aubert, Paul Baum and Roger Plymen (2011) Kazhdan-Lusztig parameters and extended quotients.

Full text available as:

PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
348 Kb

Abstract

The Kazhdan-Lusztig parameters are important parameters in the representation theory of $p$-adic groups and affine Hecke algebras. We show that the Kazhdan-Lusztig parameters have a definite geometric structure, namely that of the extended quotient $T//W$ of a complex torus $T$ by a finite Weyl group $W$. More generally, we show that the corresponding parameters, in the principal series of a reductive $p$-adic group with connected centre, admit such a geometric structure. This confirms, in a special case, our recently formulated geometric conjecture.

In the course of this study, we provide a unified framework for Kazhdan-Lusztig parameters on the one hand, and Springer parameters on the other hand. Our framework contains a complex parameter $s$, and allows us to interpolate between $s = 1$ and $s = \sqrt q$. When $s = 1$, we recover the parameters which occur in the Springer correspondence; when $s = \sqrt q$, we recover the Kazhdan-Lusztig parameters.

Item Type:MIMS Preprint
Uncontrolled Keywords:Representation theory, Hecke algebras, Langlands parameters
Subjects:MSC 2000 > 11 Number theory
MSC 2000 > 22 Topological groups, Lie groups
MIMS number:2011.22
Deposited By:Professor Roger Plymen
Deposited On:22 February 2011

Download Statistics: last 4 weeks
Repository Staff Only: edit this item