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Abstract

In this chapter, we describe the steps needed to create a kinetic model of a

metabolic pathway based on kinetic data from experimental measurements and

literature review. Our methodology is presented by utilizing the example of

trehalose metabolism in yeast. The biology of the trehalose cycle is briefly

reviewed and discussed.

1. Introduction

The emergent field of systems biology involves the study of the
interactions between the components of a biological system and
how these interactions give rise to the function and behavior of this system
(e.g., the enzymes and metabolites in a metabolic pathway). Nonlinear
processes dominate the dynamic behavior of such biological networks,
and hence intuitive verbal reasoning approaches are insufficient to describe
the resulting complex system dynamics (Lazebnik, 2002; Mendes and Kell,
1998; Szallasi et al., 2006). Nor can such approaches keep pace with the
large increases in -omics data (such as metabolomics and proteomics) and
the accompanying advances in high-throughput experiments and bioinfor-
matics. Rather, experience from other areas of science has taught us that
quantitative methods are needed to develop comprehensive theoretical
models for interpretation, organization, and integration of this data. Once
viewed with scepticism, we now realize that mathematical models, contin-
uously revised to incorporate new information, must be used to guide
experimental design and interpretation.

We focus here onmathematical models of cellular metabolism (Klipp et al.,
2005; Palsson, 2006; Wiechert, 2002). In recent years, two major (and
divergent)modelingmethodologies have been adopted to increase our under-
standing of metabolism and its regulation. The first is constraint-based model-
ing (Covert et al., 2003; Price et al., 2004), which uses physicochemical
constraints such as mass balance, energy balance, and flux limitations to
describe the potential behavior of an organism. The biochemical structure of
(at least the central) metabolic pathways is more or less well known, and hence
the stoichiometry of such a network may be deduced. In addition, the flux of
each reaction through the system may be constrained through, for example,
knowledge of its Vmax, or irreversibility considerations. From the steady-state
solution space of all possible fluxes, a number of techniques have been
proposed to deduce network behavior, including flux balance and extreme
pathway or elementary mode analysis. In particular, flux balance analysis
(FBA) (Kauffman et al., 2003) highlights the most effective and efficient
paths through the network in order to achieve a particular objective function,
such as the maximization of biomass or ATP production.
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The key benefit of FBA lies in the minimal amount of biological
knowledge and data required to make quantitative inferences about net-
work behavior. This apparent “free lunch” comes at a price, as constraint-
based modeling is concerned only with fluxes through the system and makes
neither inferences nor predictions about cellular metabolite concentrations.
By contrast, kinetic modeling aims to characterize the mechanics of each
enzymatic reaction, in terms of how changes in metabolite concentrations
affect local reaction rates. However, a considerable amount of data is
required to parameterize a mechanistic model; if complex reactions like
phosphofructokinase are involved, an enzyme kinetic formula may have 10
or more kinetic parameters (Wiechert, 2002). The determination of such
parameters is costly and time consuming, and moreover, many may be
difficult or impossible to determine experimentally. The in vivo molecular
kinetics of some important processes like oxidative phosphorylation and
many transport mechanisms are almost completely unknown, so that mod-
eling assumptions about these metabolic processes are necessarily highly
speculative.

Because precise kinetic formulas are missing for many enzymes, simpli-
fied or phenomenological approaches are used frequently to facilitate mod-
eling. One well-known approach is the power law formalism which uses an
exponential expression for each reaction step (Voit, 1991). Alternatives
include linlog kinetics, which draws ideas from thermodynamics and meta-
bolic control analysis (Hatzimanikatis and Bailey, 1997; Smallbone et al.,
2007) and convenience kinetics, which provides a more realistic approxi-
mation to the underlying enzymatic mechanisms (Liebermeister and Klipp,
2006). Finally, thermodynamic flow–force relationships are a way to relate
thermodynamics to kinetics (Westerhoff and van Dam, 1987).

In this chapter, we describe the steps needed to create a kinetic model of
a metabolic pathway. We use trehalose metabolism in yeast as an example to
apply the methodology required for this purpose. But before addressing the
mathematics, we need to understand the biology underlying the system.

2. Biological Background

The view of the role of trehalose, extensively studied in baker’s yeast,
has changed over the years. Its apparent role is to function as a carbohydrate
reservoir, but it has now gained new importance as a crucial part of a
stabilizing mechanism for proteins and cellular membranes under stress
conditions such as heat shock (Crowe et al., 1984; Singer and Lindquist,
1998). Under a stress environment, Saccharomyces cerevisiae is able to increase
the concentration of trehalose up to 15% of cell dry mass (François and
Parrou, 2001). The metabolic pathway that produces trehalose is believed to
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regulate glucose uptake, particularly when the cell exists in an adverse
environment. For the above reasons, and also because of its numerous
applications in the cosmetics, food, and pharmaceutical industries, trehalose
has become an important biotechnological product. It has also been found
that trehalose 6-phosphate (T6P), an intermediate of trehalose biosynthesis,
plays a key role in the control of glycolytic flux (Blázquez et al., 1993).

Trehalose is a disaccharide synthesized from two glucose subunits through
a pathway elucidated in yeast over 50 years ago (Cabib and Leloir, 1958). The
trehalose pathway in yeast consists of a small number of reactions, but these
are “arranged” in a metabolic cycle and are governed by a highly complicated
regulatory system of inhibitions and/or activations. Due to this complexity,
the operation of the pathway is difficult to study experimentally. Glucose is
converted into glucose 6-phosphate (G6P), which, together with uridine
diphosphate (UDP) glucose, leads to the formation of T6P and, subsequently,
trehalose. Trehalose can, in turn, be hydrolyzed into two glucose molecules,
thereby closing the trehalose cycle (see Fig. 18.1).

2.1. T6P synthase complex

In S. cerevisiae, the enzymes that catalyze the reactions of trehalose biosyn-
thesis, T6P synthase (TPS1) and T6P phosphatase (TPS2), form a complex
with two other stabilizing, noncatalytic proteins (TSL1 and TPS3). While
this complex provides the primary mechanism for trehalose biosynthesis,
TPS1 can function independently of the other units of the complex and
T6P can be dephosphorylated by other (unspecific) phosphatases (Bell et al.,
1998). An important property of this protein complex is its strong tempera-
ture activation, with an optimum at around 45 �C.

T6P synthase activity for the complex has affinities for G6P and UDP
glucose higher than their concentration in the cells (see Tables 18.1 and
18.2). The enzyme is also strongly noncompetitively inhibited by phos-
phate. Accordingly, the rate of trehalose synthesis is heavily influenced by
changes in both substrate concentration and temperature.

2.2. Response to stress

Cells subjected to stress respond with an interplay of transcriptional and
posttranslational changes that lead to a stress resistant state. Trehalose
belongs to the early metabolic response, as exposure to various stresses
leads to a rapid increase in its concentration. Its primary role is to protect
membranes from desiccation, though it can also protect proteins from
denaturation in hydrated cells.

In yeast, the transcription factors Msn2p and Msn4p control an environ-
mental stress response (Berry and Gasch, 2008). Upon heat, osmotic shock,
oxidative stress, and nutrient starvation, Msn2p/Msn4p are phosphorylated
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by protein kinase A and translocated to the nucleus. Here, these factors bind
to the stress response element (STRE) in gene promoters stimulating the
expression of a large group of stress response genes.

Medium

Cell
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GLC

ATP

ADPH+

T6P

TRH

Pi

UDP

UTP

G1P UDG

PPiH+

G6P
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Figure 18.1 The trehalose cycle. Diagram created in Arcadia (Villéger et al., 2010) and
made available in Systems Biology Graphical Notation (SBGN, Le Novère et al., 2009)
format. Reactive metabolites are marked with a blue circle, ubiquitous metabolites with
a yellow circle, reactions with a square, and regulators with a diamond. GLX, external
glucose; GLC, glucose; G6P, glucose 6-phosphate; F6P, fructose 6-phosphate; G1P,
glucose 1-phosphate; UTP, uridine triphosphate; UDG, UDP–glucose; PPi, diphos-
phate; T6P, trehalose 6-phosphate; UDP, uridine diphosphate; TRH, trehalose.
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The two best-characterized cases of response to stress—temperature
upshift and osmotic shock—show the induction of a wide class of genes
including key players of carbohydrate and trehalose metabolism, in particu-
lar (Table 18.3). In the case of heat shock, cells subjected to a temperature of
33–38 �C experience a complicated set of changes; the slight accumulation
of trehalose is primarily due to transcriptional activation of T6P1. However,
if cells are subjected to acute heat shock (over 40 �C), the induction of
STRE-containing genes is totally abolished. Rather, the efficacy to accu-
mulate trehalose at high temperature is a consequence of both direct
stimulation of T6P synthase complex activity and inhibition of trehalase
activity (François and Parrou, 2001).

In addition to environmental stress responses, genes involved in treha-
lose metabolism can be induced if other gene functions are deficient, for
example, scavenger decapping pyrophosphatase (De Mesquita et al., 2003;
Malys et al., 2004).

2.3. Interaction with glycolysis

An unexpected link between the trehalose and glycolytic pathways is that
mutations in TPS1 prevent cellular growth on glucose (Thevelein and
Hohmann, 1995). Within a few seconds of sugar addition, TPS1 mutants
accumulate large amounts of hexose monophosphates and fructose 1,6-
bisphosphate and show a depletion of ATP and a reduction of intracellular
phosphate. This reveals an imbalance between the upper (ATP consuming)
and lower (ATP regenerating) parts of glycolysis. The imbalance must be

Table 18.1 Metabolite concentrations used in the model

Metabolite Concentration (mM) Reference

ADP 1.282 Pritchard and Kell (2002)

ATP 2.525 Pritchard and Kell (2002)

Fructose 6-phosphate 0.625 Pritchard and Kell (2002)

Glucose (extracellular) 100 Pritchard and Kell (2002)

Glucose (intracellular) 0.09675 Pritchard and Kell (2002)

Glucose 1-phosphate 0.1 Voit (2003)

Glucose 6-phosphate 2.675 Pritchard and Kell (2002)

Trehalose 0.05 Voit (2003)

Trehalose 6-phosphate 0.02 Voit (2003)

UDP 0.2815 –

UDP glucose 0.7 Voit (2003)

UTP 0.6491 –

[UDP] and [UTP] are calculated from [ATP] using ratios ATP:UDP and ATP:UTP of 8.97 and 3.89,
respectively (Canelas et al., 2009).
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rectified in wild-type yeast either through a decrease in the rate of the initial
glycolytic steps or through an increase in substrates (such as free phosphate)
to activate the second part of glycolysis.

The primary explanation for the observed phenotype of TPS1 mutants is
that control is provided by T6P, which competitively inhibits hexokinase 2 at
submillimolar concentrations (Blázquez et al., 1993). But this is rather implau-
sible; one would expect T6P to be channeled within the protein complex
synthesizing trehalose and “it appears unlikely that the massive flux through
yeast glycolysis would be entirely dependent on fortuitous seeping of T6P
from the complex” (Thevelein and Hohmann, 1995). Moreover, a 50-fold
overexpression of hexokinase 2 does not lead to a TPS1 null phenotype.

T6P inhibition of hexokinase is not the complete picture of glycolysis
regulation by the trehalose cycle. A number of alternatives have been
proposed to explain the TPS1 phenotype (Gancedo and Flores, 2004).

Table 18.2 Parameter values used in the model

Parameter Value Reference

Hexokinase

KGLC 0.08 mM Pritchard and Kell (2002)

KATP 0.15 mM Pritchard and Kell (2002)

KG6P 30 mM Pritchard and Kell (2002)

KADP 0.23 mM Pritchard and Kell (2002)

KiTRH 0.04 mM Blázquez et al. (1993)

Keq 2000 Pritchard and Kell (2002)

Phosphoglucomutase

KG6P 0.05 mM Ray and Roscelli (1964)

KG1P 0.023 mM Daugherty et al. (1975)

Keq 1/6 Wright et al. (1977)

UDP–glucose phosphorylase

KUTP 0.11 mM Wright et al. (1977)

KiUTP 0.11 mM Wright et al. (1977)

KG1P 0.32 mM Wright et al. (1977)

KiUDG 0.035 mM Guranowski et al. (2004)

T6P synthase

KG6P 3.8 (�0.57) mM MCISB

KUDPG 0.886 (�0.16) mM MCISB

T6P phosphatase

KT6P 0.5 mM Vandercammen et al. (1989)

Trehalase

KTRE 2.99 (�0.45) mM MCISB

MCISB enzymes were expressed in S. cerevisiae overexpression strains (Gelperin et al., 2005), purified,
and quantified as described in Malys et al. (2010).
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It has been suggested that trehalose synthase could recycle inorganic phos-
phate to avoid a blockage of glycolysis at the glyceraldehyde 3-phosphate
dehydrogenase step; but this seems unlikely as glycolysis flux is a 100-fold
faster than trehalose formation, making it inconceivable that the pathway
could recycle sufficient phosphate. A second proposal suggested that TPS1,
hexokinase, and the glucose carrier could form a glucose-sensing complex,
but this is very much hypothetical.

It has been suggested that trehalose turnover may function as a glycolytic
safety valve (Blomberg, 2000). Comparing glycolysis to the turbo design of
a motor, it is predicted that lack of a control mechanism results in a steady
rise of sugar phosphates until ATP and phosphates are depleted (Teusink
et al., 1998). The recycling of trehalose via a futile ATP cycle could avoid
substrate-accelerated death under stress.

Recent evidence suggests that the TPS1 gene product modulates mito-
chondrial respiratory content through cAMP and interaction with hexoki-
nase 2 (Noubhani et al., 2009). Assuming this is correct, it makes sense
physiologically that both glycolysis and mitochondrial activity are con-
trolled by a common regulatory mechanism, in which when the glycolysis
flux is inhibited, the mitochondrial respiration can be activated allowing the
balancing of ATP between glycolysis and oxidative respiration.

One experimental feature not explained by any of the above hypotheses
is the lack of fermentation in TPS1 mutants, despite their accumulation of
hexose phosphates. An interesting suggestion is that the second half of
glycolysis is activated by T6P or TPS1. But, again, this is hypothetical,
and the only experimentally demonstrated connection found between
trehalose biosynthesis and glycolysis is the inhibition of hexokinase by T6P.

Table 18.3 Changes in enzymatic activities and transport steps induced by heat and
osmotic shock

Reaction

Fold change in activity upon

Heat shock Osmotic shock

Glucose transport 8 9

Hexokinase 8 15

G6P isomerase 1 1

Phosphoglucomutase 16 5

UDP–glucose phosphorylase 16 11

T6P synthase 12 6

T6P phosphatase 18 20

Trehalase 6 8

Heat shock data from Voit (2003) (processed from the transcriptomics data of Gasch et al., 2000) and
osmotic shock data from Rep et al. (2000).
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3. Model Development

Despite its small size, the trehalose cycle is governed by a surprisingly
complex control mechanism, and its interaction with glycolysis is poorly
understood. Intuitive, verbal reasoning approaches are insufficient to
describe the resulting complex system dynamics. Rather, quantitative meth-
ods are needed to develop comprehensive theoretical models for interpre-
tation, organization, and integration of available data. We present here a
methodology for building a kinetic model of the trehalose cycle, based on
characterizations of the mechanism of each enzymatic reaction in the
pathway. The model’s kinetic constants were collected through experimen-
tation, literature review, and with the help of a text-mining toolbox, KiPar,
developed to retrieve kinetic parameters of interest from publicly available
scientific literature (Spasić et al., 2009).

A mathematical description of a kinetic metabolic model may be given
in differential equation form as

x0 ¼ Nv x; y; pð Þ; x 0ð Þ ¼ x0;

and this may be used as a guide as to the data required to create and
parameterize a kinetic model.

First, N is the stoichiometric matrix, which may be derived easily from
the topology of the model (Fig. 18.1)—here derived from a recent genome-
scale reconstruction of yeast metabolism (Dobson et al., 2010). Symbol x
denotes metabolite concentrations, which for our pathway are the concen-
trations of glucose, G6P, glucose 1-phosphate, UDP glucose, T6P, and
trehalose. Symbol y denotes boundary metabolites, whose concentrations
are not allowed to vary but do affect the reaction rates; in our case, these are
ADP, ATP, fructose 6-phosphate, extracellular glucose, UDP, and UTP.
Concentrations for both x and y must be defined (see Table 18.1), though
note that only concentrations x will change over time. Finally, v denotes
reaction rates; these are dependent on kinetic mechanisms, concentrations
(x and y), and parameters (p)—typically Vmax and Km. Further information
on the individual reactions is given below. Parameter values may be found
in Table 18.2.

3.1. Hexokinase

Glucoseþ ATP ! glucose 6-phosphateþ ADPþHþ

Following Pritchard and Kell (2002), hexokinase is modeled using bi–bi
kinetics; in addition,we allow for the competitive inhibition of glucose byT6P:
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v

Vmax

¼
1

KGLCKATP
ð GLC½ � ATP½ � � G6P½ � ADP½ �

Keq
Þ

1þ GLC½ �
KGLC

þ G6P½ �
KG6P

þ T6P½ �
KT6P

� �
1þ ATP½ �

KATP
þ ADP½ �

KADP

� � :

3.2. Phosphoglucomutase

Glucose 6-phosphate $ glucose 1-phosphate

Phosphoglucomutase is modeled using uni–uni kinetics:

v

Vmax
¼

1
KG6P

G6P½ � � G1P½ �
Keq

� �

1þ G6P½ �
KG6P

þ G1P½ �
KG1P

:

3.3. UDP–glucose phosphorylase

Glucose 1-phosphateþUTPþHþ ! UDP glucoseþ diphosphate

Following Wright et al. (1977), this is modeled using an ordered bi–bi
mechanism:

v

Vmax
¼

UTP½ �
KUTP

G1P½ �
KG1P

KiUTP

KUTP
þ UTP½ �

KUTP
þ G1P½ �

KG1P
þ UTP½ �

KUTP

½G1P�
KG1P

þ KiUTP

KUTP

UDPG½ �
KiUDPG

þ G1P½ �
KG1P

UDPG½ �
KiUDPG

:

The product inhibition expression used does not include inhibition
constants for diphosphate, as this product is assumed to be effectively
hydrolyzed in vivo.

3.4. T6P synthase

Glucose 6-phosphateþUDP glucose

! trehalose 6-phosphateþUDPþHþ

This reaction is irreversible (Cabib and Leloir, 1958). Given this irrever-
sibility and no information regarding the enzymatic mechanism, or product
inhibition levels, we assume the reaction to be uninhibited by its products:

v

Vmax
¼

G6P½ �
KG6P

½UDPG�
KUDPG

1þ G6P�
KG6P

h �
1þ UDPG½ �

KUDPG

� �
:

�
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It is clear that such a form will not capture the complexities of this step
discussed above. Nonetheless, use of simple kinetics is most appropriate in
the absence of clear experimental guidance.

3.5. T6P phosphatase

Trehalose 6-phosphateþwater ! trehaloseþ phosphate

T6P phosphatase is not inhibited by trehalose (Vandercammen et al.,
1989), so we model the reaction as

v

Vmax
¼

T6P½ �
KT6P

1þ T6P½ �
KT6P

:

3.6. Trehalase

Trehaloseþ water ! 2 glucose

Trehalase is not inhibited by glucose (Wright et al., 1977), so we model
the reaction as

v

Vmax
¼

TRE½ �
KTRE

1þ TRE½ �
KTRE

:

Two reactions were modeled as per Pritchard and Kell (2002):

3.7. Glucose transport

Glucose medium½ � $ glucose cell½ �

3.8. G6P isomerase

Glucose 6-phosphate $ fructose 6-phosphate

3.9. Vmax

Vmax parameters have not been defined in Table 18.2. Such parameters
typically vary wildly, even within a single species, and are highly dependent
upon growth conditions. However, reaction fluxes through glycolysis
(89.33 mM/min; Pritchard and Kell, 2002) and trehalose (0.5 mM/min;
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Voit, 2003) are known. Using these fluxes and the other known parameter
values, Vmax values may be inferred.

3.10. Systems biology standards

Describing mathematical models as above is unwieldy and error-prone and
naturally leads to difficulties in reproduction of results. Thus researchers
have developed SBML (the Systems Biology Markup Language, Hucka
et al., 2003), a computer-readable format, for representing models
of biological processes that is supported by many software packages.
SBML can be combined with MIRIAM (the Minimum Information
Requested In the Annotation of biochemical Models, Le Novère et al.,
2005) to annotate the entities of those models, for example, by marking-up
the molecule “GLC” as CHEBI:17925 (http://www.ebi.ac.uk/chebi/
searchId.do?chebiId¼CHEBI:17925) allows its unambiguous identification
and automatically links to many additional sources of information. For more
information on these standards, see Krause et al. (2010).

The SBML model is available from BioModels.net (Li et al., 2010), a
modeling repository (see http://www.ebi.ac.uk/biomodels-main/MODEL
1010010000).

4. Results

4.1. Heat shock

Response of the cell to heat shock is simulated by modifying the enzymatic
activities and transport steps by the factors defined in Table 18.3. Expression
of genes involved in trehalose turnover is stimulated under many types of
environmental change. However, increase in production of trehalose is only
measurable under specific conditions (e.g., heat shock). This suggests that
the mRNA is not always translated into protein (and active enzyme).
Moreover, the level of protein synthesis does not always correlate with
transcription. Therefore, the increase in mRNA level and the increase in
protein activity are incorporated into these values.

Results are presented in Table 18.4: we see a large increase in the levels
of G6P and trehalose. This is in agreement with the previously measured
10- to 17-fold increase in trehalose when cells were grown under heat
shock conditions at 36 �C (Hottiger et al., 1987; Ribeiro et al., 1994).

4.2. TPS1 mutant

The effects of knocking out TPS1 are simulated by reducing TPS1 activity
to 1% of its normal level. Results are presented in Table 18.4: we see a
build-up of some intermediates in the cycle (G6P and UDP glucose) and a
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drop in concentration of others (T6P and trehalose). A minor increase in
G6P is observed, suggesting that the 50-fold decrease in T6P concentration
(from 20 to 0.4 mM) may only have a minor affect on the hexokinase
activity (the observed Ki of T6P on hexokinase 1 and hexokinase 2 are
200 and 40 mM, respectively, Blázquez et al., 1993). This further questions
the possibility of the inhibition of hexokinase by T6P.

5. Discussion

Trehalose synthesis and hydrolysis have been established as an under-
lying molecular process for stress survival and adaptation to the environ-
mental changes in S. cerevisiae and other microorganisms (Crowe et al.,
1984; Hottiger et al., 1987; Singer and Lindquist, 1998). Discovered decades
ago, its relationship with key biochemical processes involving carbohydrate
and energy metabolism has not been clearly elucidated yet (Blomberg,
2000; François and Parrou, 2001; Gancedo and Flores, 2004; Noubhani
et al., 2009; Thevelein and Hohmann, 1995).

There is a need to further develop models of cellular metabolic processes
and to analyze those with new tools and approaches derived from
the systems biology perspective. By admitting that metabolism is truly a
systemic process, one may begin to understand its emergent behavior as
more than the sum of its constituent parts. Moreover, through providing a
theoretical framework to which the vast array of available metabolic data
may be fused, one may begin to uncover the nonlinear interactions that
govern its complexities.

In the case of trehalose metabolism, a theoretical approach has got us
some way to understanding the interactive dynamics of the pathway. In this
chapter, we demonstrate how to generate a kinetic model and use it to
investigate the effects of the heat shock and TPS1 mutation on trehalose

Table 18.4 Response of model concentrations to heat shock and TPS1 mutation

Metabolite Heat shock TPS1 mutant

Glucose 0.121 �0.146

Glucose 6-phosphate 0.728 0.00213

Glucose 1-phosphate 0.0787 0.642

UDP glucose �0.0636 2.05

Trehalose 6-phosphate 0.0718 �1.67

Trehalose 0.565 �1.66

Results are presented as log([X]ss/[X]0), so a value of 2 refers to a 102 ¼ 100-fold increase in
concentration.
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metabolism. In the case of heat shock, the calculated increase in concentra-
tions of intermediate metabolites reflects the previously measured elevation
of glucose uptake and enzyme activities of trehalose metabolism (Ribeiro
et al., 1994). Moreover, the large response of trehalose concentration sup-
ports experimental observations (Hottiger et al., 1987; Ribeiro et al., 1994).
Intriguingly, the key intermediate at a crossroad of glycolysis, pentose
phosphate, glycogen, and trehalose pathways—G6P—is also greatly ele-
vated, suggesting its critical role in stress response.

The use of our model to investigate the effect of TPS1 mutation showed
an expected increase in the concentration of metabolites upstream to T6P,
that is, G6P and UDP glucose and a decrease in the concentration of
downstream derivatives, that is, T6P, trehalose, and glucose. In addition,
our model suggests that the intracellular concentration of T6P is insufficient
to reduce significantly the hexokinase activity, as it has been postulated
previously (Blázquez et al., 1993).

Due to the scope of this chapter, we limit ourselves to the kinetic
description of a single pathway. Nevertheless, it would be an intriguing
topic of future research to combine the model constructed here with a
kinetic model of glycolysis, as there is a direct link through hexokinase and
carbohydrate intermediates such as G6P and/or to extend the model to
include glycogen (interesting for the TPS1 mutant). Another interesting
extension of the model would be the addition of phosphate dynamics,
which could influence the concentration of inorganic phosphate (inhibitor
of T6P synthase) and the consumption and regeneration of ATP in the cell.

In this chapter, we have presented the necessary steps for constructing a
kinetic model of a metabolic pathway, and examples of the kinds of analyses
that can be performed with such a model. Application of such methodologies
can help us decipher metabolic behavior, especially when combined with
laboratory experiments that will test and verify the simulation results, and
suggest new directions and hypotheses for the study of the pathway of interest.
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