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Abstract
We present a dichotomy, in terms of growth at infinity, of analytic

functions definable in the real exponential field which take integer values
at natural number inputs. Using a result concerning the density of rational
points on curves definable in this structure, we show that if a function
f : [0,∞)n → R is such that f(Nn) ⊆ Z, then either sup|x̄|≤r f(x̄) grows
faster than exp(rδ), for some δ > 0, or f is a polynomial over Q.

1 Introduction
The results presented in this note concern the growth at infinity of functions
which are analytic and definable in the real field expanded by the exponential
function, and which take integer values on N. They are descendants of a theorem
of Pólya from 1915 ([Pól15]) concerning integer-valued, entire functions on C.
This classic theorem tells us that 2z is, in some sense, the smallest such function.
More formally, let m(f, r) := sup{f(z) : |z| ≤ r}. Pólya’s Theorem, refined by
[Har17] and [Pól20], states the following.

Theorem 1.1 ([Pól20], Theorem I). If f : C → C is an entire function which
satisfies both f(N) ⊆ Z and

lim supr→∞
m(f, r)

2r
< 1,

then f is a polynomial.

This result cannot be directly transferred to the real analytic setting. For
example, consider the function f(x) = sin(πx), which has every natural number
as a zero. As a function on C, f is entire and has exponential growth, but,
considered as a real analytic function, it is clearly bounded.

However, we propose that a suitable setting in which to prove analogous
results for real analytic functions is that of o-minimal expansions of the real field
R, in which such oscillating functions cannot be defined. We assume that the
reader is familiar with the basic properties of such structures (see, for example,
[dD98]). The following result applies to arbitrary o-minimal expansions of R and
is, to the authors’ knowledge, the only result with the character of 1.1 already
known for such structures.

Theorem 1.2 ([Wil04], Corollary 2.2). Suppose that f : R→ R is definable in
an o-minimal expansion of R, that k ∈ N, c ∈ R and that |f(x)| ≤ cxk, for large
x. Suppose further that f(N) ⊆ Z. Then there exists a polynomial ρ(x) ∈ Q[x]
such that f(x) = ρ(x) for all sufficiently large x.
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We shall outline several results, in the direction of Theorem 1.1, for those
functions which are definable in the structure Rexp := 〈R, exp〉. The main theo-
rem we shall prove is as follows. For technical reasons it is necessary to work in
the expanded structure Rexp,sin�[0,2π]

:= 〈R, exp, sin�[0,2π]〉. Here, for a function
f , we define the maximum functionMf (r) := sup{|f(x̄)| : x ∈ Br(0) ∩ dom(f)},
where Br(0) denotes the closed ball of radius r centred on the origin.

Theorem 1.3. Let f : [0,∞)k → R be a function definable in Rexp,sin�[0,2π]
,

which is analytic and such that f(Nk) ⊆ Z. If, for all ε > 0, ultimately Mf (t) <
exp(tε), then f is a polynomial over Q.

It is worth noting that this is not an empty theorem. For example,

f(x) = expn(2 logn(x)) and g(x) = expn(
1

2
logn−1(x))

are both analytic functions definable in Rexp for which the growth of the max-
imum function is ultimately slower than that of exp (tε), for every ε > 0, but
faster than all polynomials. This theorem tells us that such functions cannot
take integer values on N. As we shall see later, this result also applies to any
subset of Rk of the form Πk

i=1(siN + ui), for si, ui ∈ R ∩Q, i ∈ {1, . . . , k}, with
k ∈ N, where Q denotes the field of algebraic numbers over Q.

In order to prove the main theorem we shall make use of a result concerning
the density of rational points on sets definable in the structure Rexp,sin�[0,2π]

,
outlined in Section 2. A number of requisite lemmas, leading up to the proof of
Theorem 1.3, follow in Section 3.

2 The Density of Rational Points
In this section we state the principal result which we shall need in order to prove
our main theorem. It falls into a general program of bounding the density of
rational and algebraic points on subsets of Rn, with a view to applications to
transcendental number theory, following work of of Pila ([Pil91], [Pil04]) and
Pila and Wilkie ([PW06]). The particular result we shall use here concerns the
density of rational points on sets definable in Rexp,sin�[0,2π]

. This is a specific
instance of a result which also applies to points from any number field over R
and to sets definable in any model complete expansion of R by a Pfaffian chain,
but we shall not need this level of generality here (for more details see [JT11]).

In order to state this result we first need a few definitions.

Definition 2.1. For any a
b ∈ Q in its simplest form, i.e. with gcd(a, b) = 1, and

with b > 0, we define its height H(ab ) to be max {|a| , b}. The height of a finite
tuple of rationals (q1, . . . , qm) is defined to be max1≤i≤m {H(qi)}. For any set
X ⊆ Rn, let X(Q) denote its subset of points with rational coordinates and let
X(Q, T ) denote {q̄ ∈ X(Q) | H(q̄) ≤ T}. We can define a natural distribution
function thus:

N(X,T ) := |X(Q, T )|.

The theorem that we shall use may then be stated as follows. By a tran-
scendental function we mean one that does not satisfy any non-zero polynomial
equation P (y, x1, . . . , xn) = 0, for P ∈ R[Y,X1, . . . , Xn].
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Theorem 2.2 ([JT11], Corollary 4.5). Suppose that I ⊆ R is an interval and
that f : I → R is a transcendental function definable in Rexp,sin�[0,2π]

. Let X be
the graph of f . There exist c(X), γ(X) > 0 such that, for all T ≥ e,

N(X,T ) ≤ c(log T )γ .

3 Integer-Valued Functions
The result here which makes use of Theorem 2.2 is the following proposition for
integer-valued functions of one variable.

Proposition 3.1. Let f : (a,∞) → R be a function definable in Rexp,sin�[0,2π]
,

which is analytic and such that f(n) ∈ Z, for all n ∈ N ∩ (a,∞). If, for all
ε > 0, ultimately f(t) < exp(tε), then f is a polynomial over Q.

Proof. By analyticity of f and Theorem 1.2, in order to show that f ∈ Q[X], it
is enough to show that f is algebraic.

Therefore, let us suppose, for a contradiction, that f is transcendental. In
this case we may apply Theorem 2.2 to see that, for X the graph of f , there are
c, γ > 0 such that

N(X,T ) ≤ c(log T )γ ,

for all sufficiently large T ∈ N.
Now let ε < 1

γ . The growth condition on f gives us that, for all t greater
than some Nε ∈ N, f(t) < exp (tε). Without loss, let us assume that Nε > a.

We may now choose T ∈ N large enough that log T ≤ T ε, and both the
above inequality and

(log T )
1
ε > c(log T )γ + 1 +Nε

hold. For such a T we have

|N ∩ (Nε, (log T )
1
ε ]| > c(log T )γ .

By the conditions imposed, all n ∈ N ∩ (Nε, (log T )
1
ε ] have H((n, f(n))) ≤ T

and consequently N(X,T ) > c(log T )γ , but this is a contradiction to the first
inequality. Therefore, f must be algebraic and hence a polynomial over Q.

Remark. Let us suppose that f : (a,∞) → R is an analytic, non-polynomial
function definable in Rexp,sin�[0,2π]

. Moreover, suppose that, for all ε > 0, we
are given Nε > 0 such that f(t) < exp(tε) on (Nε,∞). Proposition 3.1 tells
us that f cannot be integer-valued, i.e. for some n ∈ N ∩ (a,∞), f(n) /∈ Z.
However, we can be somewhat more precise than this. The exponent γ given
to us by Theorem 2.2 may be calculated explicitly in terms of the complexity
of the function f . Consequently, the proof of Proposition 3.1 shows that it is
possible to find N ∈ [0,∞), in terms of f , such that there is some n ∈ N with
n < N and f(n) /∈ Z.

The following is an easy, technical corollary which we shall need later.

Corollary 3.2. Let f : (a,∞) → R be an analytic function definable in
Rexp,sin�[0,2π]

which has the property that f(sn + u) ∈ Z, for some s, u ∈ R ∩ Q
with s > 0, and all n ∈ N such that sn+u ∈ (a,∞). If, for all ε > 0, ultimately
f(t) < exp(tε), then f is a polynomial over R ∩Q.
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Proof. Set q(t) := st + u, for t ∈ R. It is easy to see that the function
f ◦ q : (a−us ,∞)→ R satisfies the hypotheses of Proposition 3.1. Therefore, f ◦q
is a polynomial over Q and hence f = f ◦q ◦q−1 is a polynomial over R∩Q.

Now we wish to consider higher dimensions. Recall that, for a function f ,
we define Mf (r) := sup{|f(x)| | x ∈ Br(0)}. We shall also need the following
well-known and important fact. Any polynomial p ∈ R[X1, . . . , Xn], for some
n ∈ N, which has the property that p(Z) ⊆ Z, must be a Z-linear combination of
binomial coefficients

(
Xi
k

)
, for i ∈ {1, . . . , n}, k ∈ {0, . . . ,deg (p)}. Consequently,

it is in fact a polynomial over Q.

First we shall prove a general lemma concerning definable analytic functions
in several variables with polynomial growth, a natural extension to Theorem
1.2.

Lemma 3.3. Let f : [0,∞)k → R be a function definable in an o-minimal
expansion R̃ of R, which is analytic and such that f(Nk) ⊆ Z. If there is a
polynomial p ∈ R[X] such that ultimately Mf (t) < p(t), then f is a polynomial
over Q.

Proof. We proceed by induction on k. The base case is given to us by Theorem
1.2.

Now suppose that the statement of the lemma holds for k − 1 in place of k,
and let f : [0,∞)k → R satisfy the hypotheses of the lemma.

For each fixed x1 ∈ [0,∞), define the function fx1 : [0,∞)k−1 → R by

fx1
(x2, . . . , xk) = f(x1, x2, . . . , xk).

These functions are definable in R̃ and are analytic. Moreover, if x1 ∈ N, then
both fx1(Nk−1) ⊆ Z and Mfx1

(t) < Mf (t) < p(t), for t sufficiently large. By
the inductive hypothesis, it follows that fn ∈ Q[X2, . . . , Xk], for all n ∈ N. Let
dn := deg fn, for all n ∈ N, and let d := deg p. Since Mfn(t) < p(t), for all t
sufficiently large, we must have that the degrees dn are bounded by d, for all
n ∈ N.

We now define the following subset of [0,∞).

Z := {x1 ∈ [0,∞) | fx1 ∈ R[X2, . . . , Xk] with deg fx1 ≤ d} .

Since N ⊆ Z and Z is definable, we must have that Z contains some un-
bounded interval (a,∞), by o-minimality. The function f is then a polyno-
mial in x2, . . . , xk on (a,∞) × [0,∞)k−1, of degree at most d. Its coefficients
aα depend definably on x1, for |α| ≤ d. Moreover, as fn is an integer-valued
polynomial over Q of degree ≤ d, for each n ∈ N, d!aα takes integer values at
x1 ∈ N, for all |α| ≤ d.

Let us enumerate the indices |α| ≤ d as α0, . . . , αD−1, where D :=
(
d+k−1
d

)
is the number of monomials in k − 1 variables of degree ≤ d. For each i ∈
{0, . . . , D−1}, we can represent αi as (αi,2, . . . , αi,k). Further, let pl denote the
lth prime number. With this notation, we have the following equation.

M

 αα0
(x1)
...

ααD−1
(x1)

 =

 f(x1, 1, . . . , 1)
...

f(x1, p
D−1
2 , . . . , pD−1

k )

 ,
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where M is the Vandermonde matrix with (i, j)th entry(
p
αj,2
2 · · · pαj,kk

)i
,

for i, j ∈ {0, . . . , D − 1}. This matrix has non-zero determinant and there-
fore we can find a polynomial expression for each of the coefficients aαi ,
i ∈ {0, . . . , D − 1}, in terms of f(x1, p

j
2, . . . , p

j
k), for j ∈ {0, . . . , D − 1}. Since,

for all j ∈ {0, . . . , D − 1},∣∣∣f(x1, p
j
2, . . . , p

j
k)
∣∣∣ ≤ Mf ((x2

1 + p2j
2 + . . .+ p2j

k )
1
2 )

≤ p((x2
1 + p2j

2 + . . .+ p2j
k )

1
2 ),

which is bounded by a polynomial in x1, we must therefore have that each
coefficient aαi , with i ∈ {0, . . . , D − 1}, is also polynomially bounded.

The coefficients therefore satisfy the hypothesis of Proposition 3.1 and hence
are polynomials over Q in x1 on (a,∞). Consequently, f is a polynomial over
Q in (a,∞) × [0,∞)k−1. Finally, we may use the analyticity of f to conclude
that f ∈ Q[X], as it agrees with a polynomial on an open subset of [0,∞)k.

Now we come to the proof of the main theorem. In the course of the following,
we shall use the following standard notation. For two functions f, g : (0,∞)→ R,
we write f ∼ g to mean that limt→∞

f(t)
g(t) = 1.

Proof of Theorem 1.3. In order to make the exposition clearer, let us make a
change of variables and consider f�(0,∞)k as a function in the polar coordinates
(r, θ̄), where r ∈ (0,∞) and θ̄ = (θ1, . . . , θk−1) ∈

[
0, π2

]k−1. Note that this is
still a function definable in Rexp,sin�[0,2π]

and that the change of coordinates is
analytic.

For every θ̄ ∈
[
0, π2

]k−1, we define a corresponding one variable func-
tion fθ̄ : (0,∞) → R by fθ̄(r) = f(r, θ̄), which is analytic and definable in
Rexp,sin�[0,2π]

. In addition, for fixed θ̄, the hypotheses on f give that, for any
ε > 0, |fθ̄(t)| < exp (tε), for sufficiently large t, independent of θ̄.

Now let us define Θ to be the set of those directions θ̄ for which the line
passing through the origin with direction θ̄ also passes through a point of Nk\{0̄}
(and hence through infinitely many points in this set). This set is dense in
[0, π2 ]k−1. For every θ̄ ∈ Θ, the corresponding function fθ̄ has the property
that, for some s = s(θ̄) ∈ R ∩ Q, fθ̄(sn) ∈ Z, for any n ∈ N. Consequently,
by applying Corollary 3.2, we see that, for every θ̄ ∈ Θ, the function fθ̄ is a
polynomial in r over R ∩Q of some degree dθ̄.

Let us define a function λ :
[
0, π2

]k−1 → R ∪ {−1} by the following:

θ̄ 7→

{
λ such that there exists c ∈ R with fθ(r) ∼ crλ;

−1 otherwise.

In Rexp,sin�[0,2π]
, this map is definable and therefore there is a cell decomposition

C of
[
0, π2

]k−1 on every cell of which this map is continuous. Moreover, for all θ̄ ∈
Θ, λ(θ̄) = dθ̄ ∈ N. Since Θ is dense in

[
0, π2

]k−1, the exponent function λ must
therefore be constant and non-negative on each open cell of C. Consequently,
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there is a bound d ∈ N on the values λ takes on all of
[
0, π2

]k−1, except possibly
a set of lower dimension.

Now let us define the following set of directions.

Θ′ :=

{
θ̄ ∈

[
0,
π

2

]k−1 ∣∣ fθ̄ is a polynomial of degree at most d
}

This set is definable and contains all of Θ, except possibly a set of lower di-
mension, and is therefore also dense in

[
0, π2

]k−1. By definable choice, we may
choose definable coefficient functions c0(θ̄), . . . , cd(θ̄) for all θ̄ ∈ Θ′. Moreover,
by taking an analytic cell decomposition of

[
0, π2

]k−1, we may assume that these
coefficient functions are in fact analytic on Θ′ \D′, where D′ is some set of lower
dimension; that is, they are analytic on a dense, definable set.

For each θ̄ ∈ Θ′ \ D′, f (d)

θ̄
(r) = d!cd(θ̄). However, f (d)

θ̄
(r) is just ∂df

∂rd
(r, θ̄),

which is analytic on (0,∞)×
[
0, π2

]k−1. Therefore, for any φ̄ ∈
[
0, π2

]k−1,

lim
θ̄→φ̄

cd(θ̄) =
1

d!

∂df

∂rd
(φ̄)

and hence cd has an analytic continuation to each φ̄ ∈ D′ and is bounded on all
of
[
0, π2

]k−1.
Now, for all θ̄ ∈ Θ′\D′, f (d−1)

θ̄
(r) = d!cd(θ̄)r+(d−1)!cd−1(θ̄). As before, the

left hand side is analytic and, as we now have that cd is bounded on
[
0, π2

]k−1,
we may also conclude similarly that cd−1 has an analytic continuation to each
φ̄ ∈ D′ and is bounded on all of

[
0, π2

]k−1. Continuing in this vein we have that
all the coefficient functions ci have an analytic continuation to each φ̄ ∈ D′, and
hence are bounded on

[
0, π2

]k−1, each by some Ci > 0, say.
Consequently, the function c0(θ̄) + . . . + cd(θ̄)r

d is analytic on (0,∞) ×[
0, π2

]k−1 (where we are now considering the analytic continuations of the func-
tions ci). As it agrees with f on the dense open set (0,∞)×Θ′\D′, we therefore
have this representation of f on all of (0,∞) ×

[
0, π2

]k−1. Observe then that,
for all r ∈ (0,∞), we have Mf (r) ≤ C0 + . . . + Cdr

d. Consequently f satisfies
the hypotheses of Lemma 3.3 and hence f is a polynomial over Q.

Finally, in an entirely analogous manner to the proof of Corollary 3.2, we
may also conclude the following.

Corollary 3.4. Let f : [0,∞)k → R be a function definable in Rexp,sin�[0,2π]
,

which is analytic and such that f(Πk
i=1(siN + ui)) ⊆ Z, where si, ui ∈ R ∩ Q

for i ∈ {1, . . . , k}. If, for all ε > 0, ultimately Mf (t) < exp(tε), then f is a
polynomial over R ∩Q.

We close with a remark concerning the proof of Theorem 1.3. In order to
demonstrate that a function f : [0,∞)k → R satisfying the hypotheses of the
theorem grows polynomially in r, we considered a dense set of lines through
the origin, each passing through infinitely many points of Nk. It would be of
interest to know whether an analogous approach to our proof of Lemma 3.3,
considering the restriction of f only to those hyperplanes defined by fixing one
coordinate to be an element of N, would be sufficient. We believe that even the
following question, for functions of two variables, is still open.
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Question 3.5. Let f : [0,∞)2 → R be an analytic function definable in an
o-minimal expansion of R, with the property that, for each n ∈ N, f(n, ·) is a
polynomial and f(·, n) is a polynomial. Is f necessarily a polynomial?
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