## 2012.26: A Recursive Blocked Schur Algorithm for Computing the Matrix Square Root

2012.26:
Edvin Deadman, Nicholas J. Higham and Rui Ralha
(2012)
*A Recursive Blocked Schur Algorithm for Computing the Matrix Square Root.*

There is a more recent version of this eprint available. Click here to view it.

Full text available as:

PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader 209 Kb |

## Abstract

The Schur method for computing a matrix square root reduces the matrix to the Schur triangular form and then computes a square root of the triangular matrix. We show that by using a recursive blocking technique the computation of the square root of the triangular matrix can be made rich in matrix multiplication. Numerical experiments making appropriate use of level 3 BLAS show significant speedups over the point algorithm, both in the square root phase and in the algorithm as a whole. The excellent numerical stability of the point algorithm is shown to be preserved by recursive blocking. These results are extended to the real Schur method. Recursive blocking is also shown to be effective for multiplying triangular matrices.

Item Type: | MIMS Preprint |
---|---|

Uncontrolled Keywords: | matrix function square root Schur recursive |

Subjects: | MSC 2000 > 15 Linear and multilinear algebra; matrix theory MSC 2000 > 65 Numerical analysis |

MIMS number: | 2012.26 |

Deposited By: | Dr Edvin Deadman |

Deposited On: | 30 January 2012 |

### Available Versions of this Item

- Blocked Schur Algorithms for Computing the Matrix Square Root (deposited 11 March 2013)
- Blocked Schur Algorithms for Computing the Matrix Square Root (deposited 05 December 2012)
- A Recursive Blocked Schur Algorithm for Computing the Matrix Square Root (deposited 30 January 2012)
**[Currently Displayed]**

Download Statistics: last 4 weeks

Repository Staff Only: edit this item