You are here: MIMS > EPrints
MIMS EPrints

2012.35: Preconditioning steady-state Navier-Stokes equations with random data

2012.35: Catherine E. Powell and David J. Silvester (2012) Preconditioning steady-state Navier-Stokes equations with random data. SIAM Journal on Scientific Computing (submitted).

Full text available as:

PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
1010 Kb


We consider the numerical solution of the steady-state Navier--Stokes equations with uncertain data. Specifically, we treat the case of uncertain viscosity, which results in a flow with an uncertain Reynolds number. After linearization, we apply a stochastic Galerkin finite element method, combining standard inf-sup stable Taylor--Hood approximation on the spatial domain (on highly stretched grids), with orthogonal polynomials in the stochastic parameter. This yields a sequence of non-symmetric saddle-point problems with Kronecker product structure. The novel contribution of this study lies in the construction of efficient block triangular preconditioners for these discrete systems, for use with GMRES. Crucially, the preconditioners are robust with respect to the discretization and statistical parameters, and we exploit existing deterministic solvers based on the so-called Pressure Convection-Diffusion and Least-Squares Commutator approximations.

Item Type:Article
Uncontrolled Keywords:Navier--Stokes equations, random data, stochastic Galerkin method, finite elements, mixed approximation, preconditioning, multigrid, uncertainty quantification.
Subjects:MSC 2000 > 35 Partial differential equations
MSC 2000 > 65 Numerical analysis
MIMS number:2012.35
Deposited By:Dr C.E. Powell
Deposited On:19 March 2012

Download Statistics: last 4 weeks
Repository Staff Only: edit this item