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AN ALGEBRAIC APPROACH TO TIME BORROWING

DAVID BROOMHEAD, STEVE FURBER, AND MARIANNE JOHNSON

Abstract. This paper is about a novel application of linear algebra to the timing
of digital hardware. In particular we describe a rigorous, algorithmic approach to
‘time borrowing’. Time borrowing is a technique whereby the use of a multiphase
clock can allow for a more flexible, efficient use of time. In this approach the system
is clocked periodically, but within each clock cycle processes are allowed to interact
asynchronously allowing longer processes to be juxtaposed with shorter processes.
We show that this problem can be solved completely using linear algebra defined
over the max-plus semi-ring, and that the method so obtained conforms with an
earlier, heuristic approach to the problem.

1. Introduction

In digital electronics, a latch is a piece of logic which acts as an element of memory.
The basic property of a latch is that it maintains a fixed output signal, which has the
value of the last input it received when its input was enabled. In clocked—as opposed
to asynchronous—circuits, latches are usually edge-triggered, in the sense that their
input is enabled on the rising (say) edge of the clock pulse. (The assumption here
is that the clock is manifest as a piece-wise constant periodic signal distributed syn-
chronously across the circuit.) It is possible to view edge-triggered latches in terms of
simpler transparent latches, whose enabling function depends on the (constant) value
of the clock signal rather than its dynamics at an edge. Early in the development of
VLSI design methodologies the use of multi-phase clocks with level-sensitive trans-
parent latches was a common approach [11], as this made very efficient use of limited
transistor resources. However, as transistor resources increased and dependency on
design automation became more prevalent, methodologies moved firmly towards sin-
gle clocks and edge-triggered registers. The reasons here are clear: an edge-triggered
register retimes its outputs, making timing analysis more straightforward both for hu-
man designers and, more importantly, for static timing analysis tools. Today nearly
all complex digital chip designs exploit the timing analysis benefits of edge-triggered
registers.

With the increasing importance of design for variability [1], however, it might be
timely to review this trend. The feature of edge-triggered design that makes timing
analysis straightforward also guarantees that the critical path will be one clock cycle
long. A design methodology that results in multi-cycle critical paths will benefit from
the reduced variability of those paths (in proportion to their mean delay) since this
ratio goes down with the square root of the number of gates in series in the path.
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Methodologies have been proposed to compensate for variability based on time
stealing [12, 21], where edge-triggered registers are retained but the timing of their
clocks adjusted. However level-sensitive latches automatically offer the possibility
of time borrowing [19], which is arguably a more straightforward approach to the
problem as it does not rely on clock retiming. It has, to date, carried the drawback
of having no effective timing analysis tools, although there have been attempts to
remedy this position, for example using linear programming [17]. Here we address
this shortcoming, and offer a rigorous algorithmic approach to timing analysis in time
borrowing circuits. Our approach formalizes an earlier algorithm based on graph
analysis [7] and offers a firm basis for the exploitation of time borrowing in circuits,
based on multi-phase clocks and level-sensitive latches, to reduce the adverse impact
of variability on digital circuit performance.

We will show that the timing analysis problem for time borrowing circuits reduces
to one of solving a system of linear equations over the max-plus semi-ring. ‘Minimax
algebra’ was originally championed by Cuninghame-Green [6] and has applications
in queueing theory and even railway time tabling. Nice introductions can be found
in the texts by Butkovič [4] and by Heidergott, Olsder and van der Woude [9]. We
shall try to make this paper reasonably self-contained, but the mathematical details
we shall develop rest heavily on the development described in [9].

We note that the application of max-plus methods to timing analysis is not a new
idea. In 1994 Gunawardena [8] proposed the use of min-max functions to model the
timing of digital circuits, writing

“Max-plus algebra is a highly developed theory, which seems to be largely

unknown to those working in timing analysis. It is a powerful tool for

studying systems with only maximum constraints and is an essential

foundation for the deeper results in the theory of min-max functions.”

Gunawardena noted that many of the results proved in [3, 18] are instances of general
theorems in max-plus algebra. Nearly twenty years on, max-plus methods do not
appear to be widespread amongst the timing analysis community, with only a handful
of papers in this area [15, 16, 20]. We believe that these methods have great potential
to be exploited. Thus, the aim of this paper is to illustrate some simple concepts in
max-plus algebra and show how these can be brought to bear on the time borrowing
problem.

2. Partially ordered time in digital circuitry

A graphical way to represent the relationships between the times at which the
various signals generated within a device become valid is a timing dependency graph.
This is basically a Hasse diagram (see, for example, Cameron [5]) representing the
fact that the times at which the various signals become valid is a partially ordered set.
Of course, times are non-negative real numbers, which are totally ordered using the
familiar notion of the magnitude—we write t1 < t2 if t1 is smaller in magnitude than
t2. However, in this context it is the constraints on the timings of the signals which
are the issue. In principle, the timing of the individual signals is variable so that the
constraints only impose a partial ordering on the timings. We will say t1 ≺ t2

1 if t1
is constrained to occur earlier than t2.

1Which can be read “t1 precedes t2”.
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Figure 1. A timing dependency graph of a periodically clocked sys-
tem with asynchronous processes such as might be found in the ARM6
core. The vertices of the graph (shown as circles) represent the times
at which the various signals (given by the labels) become valid, and the
directed edges give the causal links between the signals, with the labels
representing delays (in nanoseconds) due to the linking logic. Note that
the leftmost and rightmost processes are the same.

Figure 1 shows a simple example representing the kind of timings that were of
importance in the design of the ARM6 core (see [7, page 105]) . The vertices of the
graph (shown as circles) represent the times at which the various signals (given by the
labels) become valid, and the directed edges give the causal links between the signals,
with the labels representing delays (in nanoseconds) due to the linking logic. In the
figure we see for example, vertices labelled: ph1.hi; ph1.lo; ph2.hi and ph2.lo, these
represent the times at which the high and low signals of the two clock phases become
valid. Clearly ph1.hi ≺ ph1.lo ≺ ph2.hi ≺ ph2.lo, that is, the phases of the clock
represent a chain (a totally ordered subset) within the Hasse diagram. In contrast,
we see that the time at which the register output becomes valid (reg.out) is not
comparable with the time at which the output signal from the processor status register
(NZCV) becomes valid although both must occur before the output of the shifter
(Shift.out) becomes valid. The whole diagram—which is actually an infinite periodic
structure—represents a pipelined process in which the next input is being prepared for
the Arithmetic-Logic Unit (ALU) while the previous input is being operated on. The
control of the whole is ensured by requiring that the transparent latches associated
with these two parts are open during different phases of the clock.

3. The general problem

In this context, a Hasse diagram is an acyclic graph G = {V, E} consisting of a set of
vertices V representing the times in question, and E a set of directed arcs indicating
the dependencies between the times. There is a directed arc eij ∈ E if the time
vi ∈ V covers vj ∈ V ; that is, there is no other vk ∈ V such that vj ≺ vk ≺ vi. In this
application, the basic structure of the Hasse diagram is augmented by associating
with each arc in E a non-negative real number representing the delay due to the
linking logic. For example, say that the signal representing the input to an adder
becomes valid at vj and the signal representing the output of the adder becomes valid
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at vi, then τij associated with eij ∈ E, tells us how long it takes for the adder to
do its job. Formally, we can think of the function τ : E → R as giving the timing
constraints on the whole system via local rules which say that a process signal cannot
become valid until after all its input signals become valid.

Ultimately, the system we are interested in will be controlled by a periodic clock.
This implies that the graphical representation of the system will have a specific struc-
ture; G will consist of an infinite repetition of an acyclic subgraph, as is illustrated in
Figure 2. To the left and right of the central block of the figure (which represents a
general acyclic graph) there are two sets of distinguished vertices. These are known as
cyclic nodes(see [7, page 105]). They form an antichain—a set of times which are not
comparable—which disconnects G. The set of cyclic nodes on the right corresponds
to that on the left but one clock cycle later.

Figure 2. The general timing dependency graph of a periodically
clocked system.

4. The max-plus semi-ring

The natural algebraic structure that this kind of problem suggests is that associated
with the binary operations of addition and taking the maximum of real numbers.
Imagine that a given process is waiting for inputs from two other processes before it
can begin. If these two input processes are taking place in parallel, then the output
signal of our given process cannot become valid before the maximum of the times at
which the signals from the two input processes become valid. On the other hand, if
the two input processes are sequential, then the output signal of the given process
cannot become valid before the sum of the delays on the corresponding sequence of
dependency arcs.

Consider the set of real numbers R and augment this with a smallest (with respect
to the total ordering on R) element ε = −∞. Let us say R = R ∪ {ε}. Then the
binary operations ⊕ and ⊗ defined by

a ⊕ b
def
= max{a, b} and a ⊗ b

def
= a + b for all a, b ∈ R,

give a rich arithmetic on R. (To avoid ambiguities we will sometimes refer to ⊕ and
⊗ as max-plus addition and multiplication respectively.) In particular, ⊕ and ⊗ are
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commutative and associative operations and ⊗ distributes over ⊕ since

a ⊗ (b ⊕ c) = (a ⊗ b) ⊕ (a ⊗ c) ⇐⇒ a + max{b, c} = max{a + b, a + c}.

In addition, ε is the zero element in the sense that a ⊕ ε = a for any a ∈ R, and like
zero in the usual number system, a⊗ε = ε for any a ∈ R. The number 0 on the other
hand is not the zero element of R. In fact it acts as the unit element since a ⊗ 0 = a
for any a ∈ R.

There are clear differences between this max-plus system and the arithmetic we
were taught as children. In particular, a⊕ a = a for all a ∈ R, so ⊕ is idempotent. A
direct consequence of this is that there is no additive inverse2; that is, we don’t have a
nice analogue of the negative of a number3. This means that (R,⊕,⊗) is a semi-ring,
albeit one that is commutative and idempotent. This does not, however, mean that
(R,⊕,⊗) is useless. In the next section we will give the definition of a linear algebra
over (R,⊕,⊗) and summarize several important consequential results which we shall
use to solve the general time borrowing problem.

As an aside, it is worth remarking on the analogy between max-plus arithmetic
and the arithmetic of logarithms which is suggested by the correspondence between
the operations ⊗ and +. In fact, max-plus arithmetic can be seen as a limit of a
family of semi-rings isomorphic to the usual semi-ring with operations + and × over
the positive reals. These (semi-ring) isomorphisms, which depend continuously on h,
are defined as Dh : (R+ \ {0}, +,×) → (R,⊕h,⊗h) sending x 7→ h log x, where the
operations ⊕h and ⊗h are given by

a ⊗h b
def
= a + b and a ⊕h b

def
=

{

h log(ea/h + eb/h) h > 0,
max{a, b} h = 0.

There is a nice description of this and its relation to Litvinov and Maslov’s formulation
of the Quantum Mechanical Correspondence Principle in the paper by Viro [22].

5. Max-plus linear algebra

5.1. Basic definitions. Given the semi-ring (R,⊕,⊗), we can define matrices in the
obvious way

(A)ij
def
= aij , with aij ∈ R, and i = 1, . . .m, j = 1, . . . n

and operations on these which are a natural generalisation of ⊕ and ⊗:

(A ⊕ B)ij
def
= aij ⊕ bij with A, B ∈ R

m×n
,

(A ⊗ B)ij
def
=

l
⊕

k=1

aik ⊗ bkj A ∈ R
m×l

, B ∈ R
l×n

.

The lack of an additive inverse in (R,⊕,⊗) suggests that the linear algebra resulting
from these definitions might not be very useful. However, this is not the case. Our

2Assume on the contrary that for any given a 6= ε there exists b ∈ R such that a ⊕ b = ε, then
if we “add” a to both sides of this equation, the associativity of ⊕ and its idempotency give the
contradictory result a ⊕ b = a.

3Of course there are negative numbers in R, but these should be thought of in terms of the
multiplicative inverse since x ⊗ (−x) = 0
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theory of time borrowing will require a few well-established results from the quite
extensive linear algebra that can be developed; these will be recalled in the following.

5.2. A graphical interpretation. It will turn out to be useful to have a graphical
interpretation of a square matrix. Suppose we have an n×n matrix A over (R,⊕,⊗).
We can associate this uniquely with a weighted directed graph GA such that the order
(the number of vertices) of GA is n, and for each Aij = aij 6= ε there is an edge from
the vertex labelled j to the vertex labelled i. Each edge is assigned a weight given
by the corresponding matrix element aij . Conventionally, such graphs are known as
communication graphs, but for the present purpose we see that the communication
graph associated with a matrix of linking logic delay times is closely related to the
timing dependency graph introduced earlier. Such differences as there are arise when
we take an infinite, periodic, timing dependency graph—which must be acyclic—and
represent it as a finite graph with cycles.

Given a matrix A of delay times, the above interpretation also provides a picture
of powers of A. For example, the matrix element A⊗2

ij =
⊕

k Aik ⊗ Akj tells us about
all two-step processes in which signal j becoming valid leads to signal k becoming
valid which then leads to signal i becoming valid. A⊗2

ij gives the longest of these times
when all the possible intermediate signals, k, are considered. In terms of the timing
dependency graph, this maximisation is over all logic paths of length two between
vertex j and vertex i. Clearly, the mth power of A provides analogous information
about m-step logic paths.

5.3. Eigenvalues and eigenvectors. The eigenvalue problem for square matrices
is defined as one would expect. Given an n × n matrix A we look for a λ ∈ R and a
(non-trivial) vector x ∈ R

n
such that

(1) A ⊗ x = λ ⊗ x.

The following theorem, well-known to max-plus experts, links the existence of a
(unique) eigenvalue of a matrix to the structure of the corresponding communica-
tion graph (see, for example, [9]).

Theorem 1. If GA is strongly connected, then A possesses a unique eigenvalue which

is finite and equal to the maximal average delay of circuits in GA.

Here, “finite” is taken to mean that the eigenvalue is not equal to ε. A circuit is a
path in GA which leads from a vertex back to itself. There are two obvious notions
of length that might be associated with a circuit: one is the number of vertices (or
edges) in the circuit (which we shall generally refer to as the length) and the other
is the sum of the delays on the edges in the circuit. If we divide the latter by the
former we get the average delay associated with (the edges of) a circuit.

5.3.1. Example. Figure 3 shows a small example of a timing dependency graph for
a periodically forced system of asynchronous processes. As before, this should be
thought of as a portion of an infinite periodic structure. If we identify each leftmost
vertex in the figure with the corresponding rightmost vertex (we imagine the infinite
graph as being the lift of one drawn on a cylinder) we can write down the following
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Figure 3. A simple example of a graph of timing dependencies for a
periodically clocked system with asynchronous processes. The processes
are represented by numbered discs and the timings are given by the edge
labels. Note that the leftmost and rightmost processes are the same.

matrix of delay times:

(2) A =









ε ε 3 3
ε ε 3 3
4 ε ε 2
2 4 ε ε









.

Given the identification of vertices, it is clear that the timing dependency graph is
strongly connected, and therefore, according to Theorem 1, it has a unique eigenvalue.
There are circuits of length 2 (the one from vertex 1 to vertex 2 and back to vertex
1, for example) which have a total delay of 4 + 3 = 7 and therefore an average delay
of 3.5. Longer circuits cannot have a larger average than this (whenever a delay
of 4 occurs in a circuit it must be followed by a delay of at most 3), therefore the
eigenvalue is λ = 3.5.

If we define the trace of a square matrix to be the max-plus sum of its diagonal ele-
ments, we see that TrA⊗k is the maximum delay of any k-circuit of the corresponding
timing dependency graph. Thus, for a strongly connected graph GA the eigenvalue
can be found by calculating

⊕

k≥1

TrA⊗k

k
.

Here the division a
k

has the usual meaning if a ∈ R and a
k

= ε if a = ε. In this
example calculating the first few powers of A by hand we get:

TrA = ε,
TrA

1
= ε,

TrA⊗2 = 7,
TrA⊗2

2
= 3.5,

TrA⊗3 = 9,
TrA⊗3

3
= 3,

TrA⊗4 = 14,
TrA⊗4

4
= 3.5,
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which is consistent with λ = 3.5.
This example shows clearly that the eigenvalue of the timing dependency graph

is not directly relevant to the time borrowing problem. The problem is that the
eigenvalue gives us the mean delay rather than the actual delay. Indeed, we see from
the above computations of the traces that there is actually a path of length 3 from a
cyclic node to the corresponding cyclic node one period later which has a delay of 9.
This is the cycle from vertex 2 to vertex 4 to vertex 3 and back to vertex 2. Clearly
this would control the timing of the clock rather than cycles (such as the one from
vertex 1 to vertex 2 and back to vertex 1) which determine the eigenvalue.

5.4. The Kleene star. Given the lack of an additive inverse, it is not obvious that
we can solve systems of linear equations in this algebra. In fact, it turns out that the
only matrices which are invertible are monomial (see, for example [10]). However,
things are not as bad as this suggests. In practice our problem will require that we
solve a particular sort of linear equation in the form

(3) x = (A ⊗ x) ⊕ b,

where x is an unknown vector in R
n

and A is a known n × n matrix and b ∈ R
n

is
given. Formally, this equation can be solved by means of the Kleene star.

The Kleene star of the matrix A is defined as

A∗ =

∞
⊕

j=0

A⊗j,

that is, the max-plus sum of the powers of A where A⊗0 = id, the max-plus n × n
identity matrix4. Given the Kleene star, the solution to equation (3) is

x = A∗ ⊗ b.

This is easily checked by substitution.
Evidently, the definition of A∗ can only be useful if there is a finite upper bound to

the entries of the A⊗j. In the application we describe here, there is indeed an upper
bound and this is reached for some finite value of j. The following lemma will be
relevant when we come to the solution of our problem:

Lemma 2. Consider A, an n×n matrix of delays for which the corresponding graph

GA is finite and acyclic. Then there is an integer l∗ such that

A∗ =

l∗
⊕

j=0

A⊗j.

Proof. From the hypotheses that GA is finite and acyclic it follows that it has a finite,
longest directed path. Let us say that this has length l∗. Taking a matrix element
A⊗j

ik , this gives the longest delay of all the j-step paths from k to i, or ε if no such
path exists. Clearly, if j > l∗ all matrix elements of A⊗j must be ε, and therefore
powers of A greater than l∗ do not contribute to A∗. �

4That is, the n × n matrix with 0 in every diagonal entry and ε everywhere else.
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5.5. Orbits and asymptotics of autonomous linear dynamical systems. The
final issue that we need to consider is the asymptotics of iterations of the form

(4) x(k + 1) = A ⊗ x(k),

where A is an n × n matrix over (R,⊕,⊗), the x(k) are vectors in R
n

and some
x(0) ∈ R

n
is given. For the purposes of this paper we can assume that GA has a

single strong component5. Then, according to Theorem 1, A has a unique eigenvalue
lambda and this eigenvalue is finite.

The simplest situation is if x(0) is an eigenvector of A. Repeated use of equation (1)
gives

x(k) = λ⊗k ⊗ x(0),

where λ is the eigenvalue, so that in this case each component of xj(k) of x(k) grows
linearly with k giving

xj(k) = xj(0) + λk

in usual arithmetic.
This suggests a change of coordinates (which might be termed a moving frame)

which is useful even with a more general choice of x(0). Let y(k) be such that

x(k) = λ⊗k ⊗ y(k).

Since the eigenvalue λ is finite, each of the powers λ⊗k has a multiplicative inverse.
Using this to rewrite equation (4) we get:

y(k + 1) = λ⊗−(k+1) ⊗ A ⊗ λ⊗k ⊗ y(k)

= λ⊗−1 ⊗ A ⊗ y(k)

= Â ⊗ y(k),(5)

where we have used the invertibility of λ. The notation Â represents the normalised

matrix obtained by subtracting the eigenvalue of A from each of its matrix elements.
The underlying graph for this matrix (ignoring edge weights) is the same as that for
A, in this case however the maximum average delay of its circuits—and hence the
eigenvalue of Â—is 0. Obviously, if x(0) = y(0) is an eigenvector of A (and hence an

eigenvector of Â), then y(k) = y(0) for all positive k.
The situation is a little more complicated for other choices of x(0). To understand

the more general situation we need to introduce the idea of the cyclicity of A. We
begin with the communication graph GA. An elementary circuit of GA is a circuit
which, when considered as a subgraph of GA, consists of a set of vertices each with
in-degree and out-degree equal to one (that is we are only allowed to visit each vertex
once). The length of an elementary circuit is the number of vertices it contains.

The cyclicity of a strongly connected graph GA, is the greatest common divisor of
the lengths of all its elementary circuits. In particular, we note that if the elementary
cycles have lengths which are co-prime, then the cyclicity is equal to one. If the
graph consists of more than one strong component, its cyclicity is the least common
multiple of the cyclicities of its strong components.

Clearly the cyclicity is a topological property of the graph since it depends only on
the circuits and their lengths. The matrix A contains more information than this since

5We will return to this point, but it will become clear that since the underlying timing dependency
graph is periodic then if GA is weakly connected it is also strongly connected. Conversely, if GA is
not weakly connected then the problem decomposes into several independent problems.
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Figure 4. The communication graph corresponding to the matrix
given in equation (6).

it associates with each edge of GA a number representing the delay. This information
can be captured by considering the critical graph associated with GA. The critical
circuits of GA are those elementary circuits with maximum mean delay, the critical
graph associated with GA is the subgraph consisting of vertices and directed edges
found in the critical circuits of GA. The cyclicity of the matrix A, denoted σ(A) is
the cyclicity of the critical graph associated with GA.

As an example consider:

(6) A =

(

9 9
7 7

)

.

The corresponding communication graph is shown in Figure 4. The graph has two
kinds of elementary circuit: the self-loops (delays 9 and 7; length 1) and the cycle
involving both vertices (delay 16; length 2). The eigenvalue of A in this example is
therefore 9, and hence

Â =

(

0 0
−2 −2

)

.

Moreover, the only critical circuit of the graph is the self-loop with delay 9. The
critical graph therefore consists of the vertex labelled “1” in Figure 4 together with
the self-loop. The cyclicity of this critical graph, and therefore of A, is one.

The following theorem tells us about the asymptotic behaviour of x(k) or y(k) with
general initial conditions (see for example [9])

Theorem 3. Let GA be strongly connected and let the matrix A have eigenvalue λ
and cyclicity σ(A). Then there exists a positive integer K such that

A⊗(k+σ(A)) = λ⊗σ(A) ⊗ A⊗k

for all k ≥ K.



AN ALGEBRAIC APPROACH TO TIME BORROWING 11

If we consider Â, then for sufficiently large k

Â⊗(k+σ(A)) = Â⊗k

or, using equation (5),

y(k + σ(A)) = Â⊗(k+σ(A)) ⊗ y(0)

= Â⊗k ⊗ y(0)

= y(k).

Thus asymptotically y(k) is periodic with period σ(A).
Returning to our small example we see that, given an arbitrary choice of y(0), for

k ≥ 1 the iterates y(k) are constant, that is, y(k) is periodic with period 1, which is
equal to the cyclicity of A, as required by the theorem:

y(1) =

(

0 0
−2 −2

)

⊗

(

u
v

)

=

(

max{u, v}
max{u, v} − 2

)

,

y(2) =

(

0 0
−2 −2

)

⊗

(

max{u, v}
max{u, v} − 2

)

=

(

max{u, v}
max{u, v} − 2

)

.

6. Petri nets

So far in this paper, a timing dependency graph has been taken to be an infi-
nite Hasse diagram having a periodic structure or, equivalently, as a finite graph
whose circuit structure captures the repetitive periodic form. Here we shall make
this relationship more precise by introducing a kind of finite automaton which can be
inferred directly from the finite form of the timing dependency graph and which can
be thought of as being the generator of the infinite Hasse diagram. Generally such
automata are known as Petri nets [14].

A Petri net is a directed, bipartite graph. The two classes of vertex of a Petri net
are called “places” (which graphically we shall represent as circles) and “transitions”
(which are drawn as vertical lines). The states of a Petri net correspond to distribu-
tions of tokens (represented as dots) across the places of the net. A given distribution
of tokens is referred to as a “marking”. Every transition has a set of directed edges
incident to it from a set of input places, and a set of edges from it to output places.
The dynamics of the Petri net follow from the rule that a transition can only fire if
all of its input places have a token. When a transition fires, one token is removed
from each of its input places and added to each of its output places6.

The connection between Petri nets and timing dependency graphs can be made by
making the identification shown in Figure 5: we identify the time at which a signal
becomes valid with the time at which the corresponding transition fires, and the
weights on the edges of the timing dependency graph (delays associated with linking
logic) with waiting times at the places of the Petri net.

Returning to the example shown in Figure 3, we can draw the corresponding Petri
net using these rules, the result is shown in Figure 6. Additionally, Figure 6 shows
a possible initial marking for the system. Given this marking, we see that, initially,
either of the transitions T1 or T2 can fire. Let us assume that it is T1. Then the next
marking will be as shown in Figure 7. Figures 8 and 9 show the subsequent evolution

6There is no suggestion here that tokens are conserved. In particular, the number of input places
need not equal the number of output places.
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Figure 5. The relationship between elements of the timing depen-
dency graph and the corresponding Petri net representation.

of the Petri net until the marking returns to the initial one. We note that in this case
the order in which T1 and T2 fire has little effect on the overall dynamics.

Figure 6. The Petri net corresponding to the timing dependency
graph shown in Figure 3. This should be imagined drawn on the surface
of a cylinder with the dash-dotted lines identified so that the pairs of
points labelled A, B, C and D coincide. A possible initial marking is
shown.

7. Timed event graphs and their analysis

7.1. Timed event graphs. Petri nets derived from timing dependency graphs by
the translation rules given above have a particular structure; all places have exactly
one upstream and one downstream transition. A Petri net having this property is
known as a timed event graph. The number of tokens in each circuit of a timed event
graph is conserved [9] and—importantly for the problem we are studying—the timing
of events can be written as a linear process in the max-plus semi-ring.

7.2. A worked example. In the rest of this section we shall consider the example
first introduced in Figure 3 and whose evolution as a Petri net is illustrated in Fig-
ures 6 to 9. The evolution of this system will be characterized by a vector-valued
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Figure 7. The Petri net corresponding to the timing dependency
graph shown in Figure 3. The marking shown follows from that in
Figure 6 assuming that transition T1 has fired.

Figure 8. The Petri net corresponding to the timing dependency
graph shown in Figure 3. The marking shown follows from that in
Figure 7 (transition T2 has fired).

sequence x : N → R
n
, where xi(k) is the time at which signal i becomes valid for

the kth time. In terms of the Petri net, xi(k) is the time that the transition Ti fires
for the kth time. In our general setting, n is the number of signals we are keeping
track of and hence also the size of the matrix of delay times and the vector x; in the
example n = 4.

It is straightforward to conclude from Figures 6 to 9 that the initial marking shown
in Figure 6 is recurrent. Let us imagine that we know x3(k) and x4(k), the times at
which T3 and T4 fire for the kth time to give the marking shown in Figure 6 for the
(k + 1)th time. It follows that

x1(k + 1) = max{x3(k) + 3, x4(k) + 3},

x2(k + 1) = max{x3(k) + 3, x4(k) + 3},
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Figure 9. The Petri net corresponding to the timing dependency
graph shown in Figure 3. The marking shown follows from that in
Figure 8 (transition T4 has fired). Note that given this marking the
next transition to fire must be T3. Following this, the marking is again
that shown in Figure 6

which in max-plus notation can be written as

x1(k + 1) = (3 ⊗ x3(k)) ⊕ (3 ⊗ x4(k)),

x2(k + 1) = (3 ⊗ x3(k)) ⊕ (3 ⊗ x4(k)).

Similarly we see that

x4(k) = max{x1(k) + 2, x2(k) + 4},

x3(k) = max{x1(k) + 4, x4(k) + 2},

which is written as follows in max-plus notation

x4(k) = (2 ⊗ x1(k)) ⊕ (4 ⊗ x2(k)),

x3(k) = (4 ⊗ x1(k)) ⊕ (2 ⊗ x4(k)).

We can combine these results into a system of linear equations which implicitly
gives the evolution of x:

(7) x(k) = (A0 ⊗ x(k)) ⊕ (A1 ⊗ x(k − 1)),

where

A0 =









ε ε ε ε
ε ε ε ε
4 ε ε 2
2 4 ε ε









, A1 =









ε ε 3 3
ε ε 3 3
ε ε ε ε
ε ε ε ε









.

We will show later that the general time borrowing problem results in an evolution
equation in the form of equation (7). The details of a given problem are encoded in
the form of the matrices A0 and A1. A comparison of A0 and A1 with A defined in
equation (2)—the matrix of delay times for this example—shows that they are closely
related. In fact A = A0 ⊕A1. The derivation given above has effectively decomposed
A into two parts by taking account of the dependence of x on the variable k.
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Although it is an implicit equation for the evolution of x, equation (7) is in the form
of equation (3) and can be solved using the Kleene star of A0 to give the following
explicit dynamical system

x(k) = A∗
0 ⊗ A1 ⊗ x(k − 1).

The communication graph GA0
is the subgraph of that shown in Figure 3 obtained

by removing the right hand pair of vertices labelled 1 and 2 (and the edges incident
to them). We see that the result is an acyclic graph where the maximum path length
is 2. According to Lemma 2 the Kleene star of A0 is given by the sum

A∗
0 = id ⊕ A0 ⊕ A⊗2

0 ,

so

A∗
0 =









0 ε ε ε
ε 0 ε ε
ε ε 0 ε
ε ε ε 0









⊕









ε ε ε ε
ε ε ε ε
4 ε ε 2
2 4 ε ε









⊕









ε ε ε ε
ε ε ε ε
4 6 ε ε
ε ε ε ε









=









0 ε ε ε
ε 0 ε ε
4 6 0 2
2 4 ε 0









.

Using this we get the following linear evolution equation

x(k) =









ε ε 3 3
ε ε 3 3
ε ε 9 9
ε ε 7 7









⊗ x(k − 1).

This reduces to a skew product dynamical system with the base dynamics given by

(8)

(

x3(k)
x4(k)

)

=

(

9 9
7 7

)

⊗

(

x3(k − 1)
x4(k − 1)

)

and the following additional relation giving the behaviour of the other two components
of x:

(

x1(k)
x2(k)

)

=

(

3 3
3 3

)

⊗

(

x3(k − 1)
x4(k − 1)

)

.

To complete the specification of the problem we need some initial data. If we look at
Figures 6 to 9 and assume that (x1(1), x2(1)) = (0, 0), for example, then

(

x3(1)
x4(1)

)

=

(

6
4

)

.

We have already analysed the asymptotics of equation (8) as an example (equa-
tion (6)) in section 5.5. There we found that, following an initial transient of one
time step, the growth of x is determined by the eigenvalue, which is 9. In particular,
given the initial condition assumed here we have:

(

x3(2)
x4(2)

)

=

(

9 9
7 7

)

⊗

(

6
4

)

=

(

15
13

)

,

(

x3(3)
x4(3)

)

=

(

9 9
7 7

)

⊗

(

15
13

)

= 9 ⊗

(

15
13

)

.
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7.3. Remarks. The first remark that should be made is that the eigenvalue of the
matrix A∗

0 ⊗ A1 really does tell us about the way that the system should be clocked
because it is the maximum delay of all the elementary circuits of the timing depen-
dency graph shown in Figure 3. In contrast, as it was remarked in section 5.3.1, the
eigenvalue of A gives the maximum average delay of the circuits of the graph.

There is a nice interpretation of the matrix product A∗
0⊗A1 which gives a rationale

to this. We know that A∗
0 gives the maximum lengths of paths through the acyclic part

of the timing dependency graph, and A1 gives the delays associated with attaching
this to the cyclic nodes. In particular, (A∗

0 ⊗ A1)ij is the maximum delay associated
with paths which leave cyclic node j and arrive at cyclic node i without passing
through any other cyclic nodes (recall that the cyclic nodes are an antichain which
separates the timing dependency graph).

7.4. A slightly different example. Figure 10 shows the timing dependency graph
for a different example, with the corresponding Petri net representation, with a choice
of initial marking, shown in Figure 11. This example has the form of a two stage
asynchronous FIFO buffer, but we have wrapped it around to indicate the connection
with an external clock signal. It can be thought of as a two-stage pipeline process
which has much in common with the example shown in Figure 1. The mechanics

Figure 10. Another example of a graph of timing dependencies
for a periodically clocked system with asynchronous processes. The
processes are represented by numbered discs and the timings are given
by the edge labels. Note that the leftmost and rightmost processes are
the same.

of deriving the max-plus equations giving the timings of the process are essentially
those described in the previous example. Again, we find a system of linear equations
which implicitly give the evolution of x:

x(k) = (A0 ⊗ x(k)) ⊕ (A1 ⊗ x(k − 1)),

but in this case

A0 =









ε ε ε ε
ε ε ε ε
θ 0 ε ε
0 4 ε ε









, A1 =









ε ε 0 3
ε ε 3 0
ε ε ε ε
ε ε ε ε









.
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Figure 11. The Petri net corresponding to the timing dependency
graph shown in Figure 10. This should be imagined drawn on the
surface of a cylinder with the dash-dotted lines identified so that the
pairs of points labelled A, B, C and D coincide. A possible initial
marking is shown.

Note that in this example we have an undetermined parameter, θ ≥ 0. We shall
investigate changes in the behaviour of the system as θ is varied—we shall treat θ as
a kind of bifurcation parameter.

It can be seen from a simple consideration of the block structure of A0 that its
Kleene star consists of just two terms:

A∗
0 = id ⊕ A0,

so that

A∗
0 =









0 ε ε ε
ε 0 ε ε
θ 0 0 ε
0 4 ε 0









.

The explicit form of the evolution equation for x(k) is then

x(k) = A∗
0 ⊗ A1 ⊗ x(k − 1)

=









ε ε 0 3
ε ε 3 0
ε ε 3 ⊕ θ 3 ⊗ θ
ε ε 7 4









⊗ x(k − 1),

which again reduces to a simpler skew product system:

(9)

(

x3(k)
x4(k)

)

=

(

3 ⊕ θ 3 ⊗ θ
7 4

)

⊗

(

x3(k − 1)
x4(k − 1)

)

and
(

x1(k)
x2(k)

)

=

(

0 3
3 0

)

⊗

(

x3(k − 1)
x4(k − 1)

)

.

The latter equations are particularly transparent, since they state that signal 1 be-
comes valid three time units after signal 4 or immediately after signal 3, whichever
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is the later. Similarly, signal 2 becomes valid three time units after signal 3 or after
signal 4 whichever is the later. This is evident in both Figure 10 and Figure 11.

The asymptotic behaviour of the base system given in equation (9) is more inter-
esting and depends qualitatively on the value of θ. To understand this we need to
calculate the cyclicity of the matrix

Aθ =

(

3 ⊕ θ 3 ⊗ θ
7 4

)

.

Figure 12. The communication graph corresponding to the matrix Aθ.

The communication graph for Aθ is shown in Figure 12. As with the earlier example,
the graph has two kinds of elementary circuit: self-loops (delays 4 and 3 ⊕ θ; length
1) and the cycle involving both vertices (delay 10 + θ; length 2). The eigenvalue of
Aθ is therefore max{4, 3 ⊕ θ, (10 + θ)/2} = max{θ, (10 + θ)/2}. So, if θ ∈ [0, 10], the
eigenvalue is (10 + θ)/2 and when θ ≥ 10 the eigenvalue is θ. The same calculation
shows that when θ ∈ [0, 10) the cyclicity of Aθ is two (the critical graph contains only
the cycle of length 2 connecting vertices 1 and 2), and when θ ≥ 10 the cyclicity of
Aθ is one. (When θ > 10 the critical graph is vertex 1 together with the self-loop.
The particular case of θ = 10 also has the cyclicity of Aθ equal to one; in this case
the critical graph has both the length two cycle and the self loop.)

Using Theorem 3 we can describe the asymptotic behaviour of the vector of times
x(k). When θ ≥ 10, then there is a sufficiently large positive integer K such that

A
⊗(k+1)
θ = θ ⊗ A⊗k

θ

for all k ≥ K. That is, the times increase linearly as a function of k:
(

x3(k)
x4(k)

)

= θ ⊗

(

x3(k − 1)
x4(k − 1)

)

.
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This is the same qualitative behaviour as in the example considered earlier. If, as
in that case, we choose the initial data to be (x1(1), x2(1)) = (0, 0), then

(

x3(1)
x4(1)

)

=

(

3
3

)

and therefore
(

x3(2)
x4(2)

)

=

(

θ 3 ⊗ θ
7 4

)

⊗

(

3
3

)

=

(

6 ⊗ θ
10

)

.

Iterating twice more shows that in this case when k = 4 the vectors have settled into
the expected pattern:

(

x3(3)
x4(3)

)

=

(

θ 3 ⊗ θ
7 4

)

⊗

(

6 ⊗ θ
10

)

= θ ⊗

(

6 ⊗ θ
13

)

,

(

x3(4)
x4(4)

)

= θ ⊗

(

θ 3 ⊗ θ
7 4

)

⊗

(

6 ⊗ θ
13

)

= θ⊗2 ⊗

(

6 ⊗ θ
13

)

.

If, on the other hand, θ is decreased so that θ ∈ [0, 10), Theorem 3 indicates a quite
different asymptotic behaviour for the x(k). In this case the cyclicity of the matrix
is two, so that for a sufficiently large positive integer K,

A
⊗(k+2)
θ = (

10 + θ

2
)⊗2 ⊗ A⊗k

θ

for all k ≥ K. In this case the increase of the times as a function of k has a period-2
modulation and the uniform linear increase in the times is only observed if we look
at every other value of k:

(10)

(

x3(k)
x4(k)

)

= (
10 + θ

2
)⊗2 ⊗

(

x3(k − 2)
x4(k − 2)

)

.

If we choose the initial data as above, and assume that θ = 9 in order to have a
concrete example, then we get the following sequence of times

(

3
3

)

7→

(

15
10

)

7→

(

24
22

)

,

which settles down to the expected period-2 behaviour
(

24
22

)

7→

(

34
31

)

7→ 19 ⊗

(

24
22

)

.

The interpretation of this example is that the question of how to clock the device
depends rather sensitively on the value of θ. When θ ≥ 10, following an initial
transient, the minimum period of the clock that we can use to time the device is
θ. On the other hand, if θ ∈ [0, 10) then although the eigenvalue is (10 + θ)/2, this
is not a useful clock period. In the numerical example, when θ = 9, although the
timings advance by 19 = 2 × 9.5 in two steps, after one step we see one process
takes longer than 9.5 while the other takes less (for example, x3(4)− x3(3) = 10 and
x4(4) − x4(3) = 9). Thus, in this example, the minimum suitable clock period is 10
(which is the shortest time it would take to complete all processes), unless the system
is implemented using something like the transparent latch technology described in
section 1. Using such technology we might arrange for the signals to be timed every
two periods of a clock which has period 9.5. In each half of this two cycle period, a
slow process borrows time from a corresponding faster process.
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8. The General Case

So far, the theory has been illustrated through small examples. In this section
we will establish that the structure we have identified is actually preserved in more
general cases. We will do this graphically using block representations of the matrices
involved. However, it should be clear that this is just a shorthand way of describing
rigorous manipulations in the max-plus linear algebra.

Returning to the general timing dependency graph shown in Figure 2, we imagine
translating this into a Petri net using the correspondence shown in Figure 5. The
structure of the resulting Petri net is obvious: the region marked “acyclic timing
dependency graph” in Figure 2 becomes an acyclic Petri net; for each cyclic node
there is a transition; for each edge incident to a cyclic node there is a place with single
edge which connects it to the transition and single edge incident from a transition
within the acyclic Petri net. The overall periodic structure of the timing dependency
graph is reflected in the cylindrical structure of the Petri net achieved by identifying
the transitions associated with the cyclic nodes. A comparison between, say, Figure 3
and Figure 6 shows how this works. In this example the acyclic part of the timing
dependency graph is vertices 3 and 4 and the edge connecting them. In the Petri net,
the corresponding transitions T3 and T4 are connected via a single place. The cyclic
nodes are vertices 1 and 2 in Figure 3. For convenience, in the Petri net we have
lined up the input places to corresponding transitions, T1 and T2 to the left. It will
be assumed that an initial marking with each of these places given one token will not
lead to a “deadlock” in which the Petri net becomes frozen in the same state.

A Petri net derived from a timing dependency graph is a timed event graph (see
section 7.1), and can therefore be expressed as a linear max-plus system. In sec-
tion 7.2, we derived such an expression—equation (7)—for our first example. The
form of this equation is general for the problems that we will study—that is, timed
event graphs with an initial marking which has no more than one token per place (see,
for example, [9, Chapter 7])—and so it remains to establish what we know about the
structures of the matrices A0 and A1. As with the simple examples given earlier,
these matrices are a decomposition, based on the initial marking of the Petri net, of
the matrix of delay times.

Let the total number of transitions in the Petri net be n, and of these, let there be
nc transitions corresponding to the cyclic nodes. The places of the Petri net will each
have an associated delay time. Since each place of a timed event graph has a unique
upstream transition and a unique downstream transition we can think of the delay
times as being organised as an n× n matrix, τ where τij is the delay associated with
the place leading from Tj to Ti. Recall that the linear system will give the evolution

of a vector-valued time series x : N → R
n
, where xi(k) is the time at which signal i

becomes valid for the kth time. This has the form

(11) x(k) = (A0 ⊗ x(k)) ⊕ (A1 ⊗ x(k − 1)).

The matrices A0 and A1 have the following structure (see [9, Section 7.2])

(Am)ij =







τij if in the initial marking, there are exactly m tokens
in the place leading from Tj to Ti,

ε otherwise.
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If we label the components of x ∈ R
n

so that the first nc correspond to the cyclic
nodes, then (as we shall see in a moment) we obtain a simple block structure for A0

and A1:

A0 =

(

ε ε
b0 B0

)

, A1 =

(

ε b1

ε ε

)

.

Firstly, it is easy to see that both A0 and A1 have an nc × nc block of ε entries
in the upper left corner, which arises because the cyclic nodes have no mutual inter-
dependencies—they were chosen to be an antichain of the original timing dependency
graph.

By definition, the entries of A0 not equal to ε correspond to the waiting times at
places containing no tokens in the initial marking. Since the only places containing
tokens in the initial marking are those leading to transitions corresponding to the
cyclic nodes, it is easy to see that the (n− nc)× (n− nc) block B0 in the lower right
corner contains the delay times within the acyclic component of the graph, whilst the
(n − nc) × nc block b0 in the lower left corner contains the delays on edges from the
cyclic nodes to the acyclic component. As already mentioned, the nc × nc block in
the upper left corner of the matrix is null because there are no connections between
the cyclic nodes. The remaining nc × (n − nc) block in the upper right corner is
null because the initial marking has a token in the places leading from the acyclic
component to the cyclic nodes (and hence these delays are found in A1).

By similar reasoning we see that the only block of A1 which is not null is the
nc × (n− nc) block b1 in the upper right corner, which contains the delays associated
with the places leading from the acyclic component to the cyclic nodes (since these
each have a single token in the initial marking).

Having established the form of the implicit equation (11) in this more general
setting, we need to transform it to an explicit form as was done in the examples.
To do this we need to compute the Kleene star of A0, and to this end we need to
investigate the form of powers of A0. Let us first consider the form of the product
A0⊗A0. The dimensions of the blocks are such that we can reduce the whole product
to a set of block products:

A0 ⊗ A0 =

(

ε ε
b0 B0

)

⊗

(

ε ε
b0 B0

)

=

(

ε ε
B0 ⊗ b0 B0 ⊗ B0

)

.

Notice that the top nc rows of A0 ⊗A0 are all null. Moreover, by a simple induction,
we can easily compute the block form of arbitrary powers of A0:

A0 ⊗ A⊗j
0 =

(

ε ε
b0 B0

)

⊗

(

ε ε

B
⊗(j−1)
0 ⊗ b0 B⊗j

0

)

=

(

ε ε

B
⊗(j)
0 ⊗ b0 B

⊗(j+1)
0

)

.

The important point to note about the structure of A⊗j
0 is that the lower right,

(n− nc)× (n− nc) diagonal block is B⊗j
0 and the (n− nc)× nc block is B

⊗(j−1)
0 ⊗ b0.

When we form the Kleene star of A0, we need to compute the max-plus sum of the
corresponding blocks, ranging over all powers j. Thus the lower right hand block of
A∗

0 will be the Kleene star of B0,

B∗
0 =

l∗
⊕

j=1

B⊗j
0 ⊕ id,
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where l∗ is the longest directed path in the acyclic component. Similarly, the lower
left hand block of A∗

0 will be given by

B∗
0 ⊗ b0 =

l∗+1
⊕

j=1

B
⊗(j−1)
0 ⊗ b0.

In other words,

A∗
0 =

l∗+1
⊕

j=0

A⊗j
0 =

(

id ε
B∗

0 ⊗ b0 B∗
0

)

.

The final step in this process is to form the product A∗
0 ⊗ A1. This, again, can be

done exploiting the block structures of the matrices, giving

A∗
0 ⊗ A1 =

(

id ε
B∗

0 ⊗ b0 B∗
0

)

⊗

(

ε b1

ε ε

)

=

(

ε b1

ε B∗
0 ⊗ b0 ⊗ b1

)

.

The equations governing the evolution of x(k) are then given by

(12) x(k) = A∗
0 ⊗ A1 ⊗ x(k − 1).

Since the first nc columns of A∗
0⊗A1 are null, it is possible to reduce this system of

equations. To do this, we shall think of x ∈ R
n

= R
nc

×R
n−nc

and write x = (x(c) : x̃),

where x(c) ∈ R
nc

gives the timing of the cyclic nodes and x̃ ∈ R
n−nc

gives the timing
of the rest. Substituting this into equation (12) and using the block matrix form of
A∗

0 ⊗ A1 gives the following system of equations

x(c)(k) = b1 ⊗ x̃(k − 1),(13)

x̃(k) = Ã ⊗ x̃(k − 1),(14)

where

(15) Ã = B∗
0 ⊗ b0 ⊗ b1.

In effect, this has reduced the dynamics by eliminating the cyclic nodes. Mathe-
matically, equations (13) and (14) have the form of a skew product. The dynamics

takes place in R
n−nc

and is a linear evolution governed by the matrix Ã. The timings
of the cyclic nodes are obtained from the orbit {x̃(k) : k ∈ N} by applying the fixed

linear mapping b1 : R
n−nc

→ R
nc

to each x̃(k).
Looking back at the examples described earlier, it is clear that the rather special-

looking block structures which arose there were actually a consequence of the structure
of our basic problem rather than a peculiarity of the examples. As with those exam-
ples, the timing of the system can be explained entirely in terms of the eigenvalue
and cyclicity of the matrix Ã.

9. Numerical Methods

The ARM6 example taken from [7] and shown in section 1 is greatly simplified.
The full design had of the order of 100 nodes, 20 to 25 cyclic nodes with the timing
dependency graph having around 300 edges. Clearly problems of this size require
numerical methods. Here we shall give a brief review of some of the available algo-
rithms and the estimates of how they scale with problem size. This is not intended
to be an exhaustive review, our main source of information is the two texts we have
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used extensively in writing this paper [4] and [9]. Our main point will be that numer-
ical algorithms do exist. Indeed, the numerical analysis of linear algebra problems
over the max-plus semi-ring—frequently called tropical problems—is an active field
of research.

The kinds of numerical computations that we need for this work involve matrix
multiplication, the computation of the Kleene star and techniques for finding the
eigenvalue and cyclicity of matrices.

The product of a pair of n × n matrices uses O(n3) ⊕ and ⊗ operations (that is,
comparisons and additions). This is the basic expectation, it is as if we were to get
the computer to reproduce the process that we might do by hand. In conventional
arithmetic there are faster ways to do matrix multiplication which use O(nα) ( 2 <
α < 3) floating point operations, but it appears that nothing analogous has been
found for max-plus computations [4]. Nevertheless, we might expect that the practical
tricks for speeding up matrix multiplication using parallelisation will carry over to
the max-plus case.

Given this limitation on matrix multiplication, it seems that the computation of
the Kleene star of an n×n matrix would take O(n4) operations. However, a dynamic
programming algorithm (the so-called Floyd-Warshall algorithm—see for example [2])
for finding the longest paths in a weighted graph can be used to do compute the Kleene
star in O(n3) operations.

Of the commonly-used algorithms for computing the eigenvalue of a max-plus ma-
trix, perhaps the best known is Karp’s algorithm [13, 4, 9]. This finds the maximum
cycle mean of an n×n matrix in O(n|E|) operations where |E| is the number of edges
of the communication graph associated with the matrix. Clearly this can be fast if
the matrix is sparse, but, at worst, the number of operations scales as O(n3).

The limitation of Karp’s algorithm is that although it finds the eigenvalue, it does
not give a corresponding eigenvector (which is desirable if we can control the initial
conditions and wish to obtain periodic behaviour). A method that does give both
eigenvalue and eigenvector is the power method [9], which, as with its counterpart
in standard linear algebra involves computing powers of the matrix in question. In
effect, the power method corresponds to the naive approach to solving problems like
equation (14), that is, iteration. Simple iteration eventually tells us all we need to
know, that is, the asymptotic growth rate of the times (hence the eigenvalue) and any
periodic modulation on the asymptotic growth (hence the cyclicity). The problem
with simple iteration and the power method is that there are as yet no good estimators
of the transient times which precede the desired asymptotic evolution. Actually, this
limitation corresponds to a physical issue with the kind of digital devices we have in
mind, since the transient times will correspond to the times that a device will take
to settle down into its normal behaviour after it has been switched on.

10. Conclusion

The main conclusion of this work is that given a timing dependency graph repre-
senting the interaction of asynchronous processes within a periodically clocked system,
it is possible to write down a max-plus matrix which determines the behaviour of the
system. Moreover, the information required to find the minimum feasible period of
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the clock is contained in the eigenvalue and cyclicity of this matrix. Thus, the prob-
lem has been reduced to an algorithmic one, one that can be solved using suitable
numerical methods.

It is interesting to compare this approach with the heuristic method for time bor-
rowing designs described in [7]7. We quote directly:

The algorithm to identify the critical paths begins by reducing the graph

to one with just the cyclic nodes, removing all the inner detail by recur-

sively searching the graph for the longest path from each input to each

output. Then the reduced graph is repeated to form graphs of length

1 to N clock cycles, where N is the number of cyclic nodes. Finally

each of these graphs is searched for the longest route from any input to

its corresponding output, and the longest of these over all the repeated

graphs, scaled by the number of clock cycles the graph represents, gives

the minimum clock period for the design. Tracing this path back to the

original graph yields the critical path.

If we consider the definition of Ã given in equation (15), many of the elements of the
heuristic method are clear. The matrix b1 contains the delays associated with edges
leading from the acyclic component to the cyclic nodes and b0, contains the delays on
edges from the cyclic nodes to the acyclic component. The matrix element (b0 ⊗ b1)jk

is, therefore (using the definition of the matrix product) the maximum delay along
all paths which leave the acyclic component from the kth node and enter the acyclic
component again at the jth node going via any one of the cyclic nodes. Similarly, we
know that the matrix element of Kleene star (B∗

0)ij gives the maximum delay of all
paths through the acyclic component going from node i to node j. The interpretation
of a general matrix element of Ã, is that Ãik is the maximum delay of all possible
paths from acyclic node k to acyclic node i where the paths pass through a single
cyclic node. That is, all paths which cross one period of the timing dependency graph.

In effect, the communication graph of Ã plays the role of the reduced graph de-
scribed in the heuristic. Albeit a reduced graph based on the nodes of the acyclic
component of the timing dependency graph, rather than the cyclic nodes. The anal-
ysis of Ã in terms of its eigenvalue and cyclicity, provides a description of the form of
powers of the matrix. For instance, Ã⊗p gives the maximum delays associated with
paths which go around p times. (In the heuristic this corresponds to the analysis of

the repetitions of the reduced graph.) Thus the eigenvalue of Ã, gives the minimum
clock period as found in the heuristic. The cyclicity gives the number of times the
critical path goes around. The critical path itself can be identified by looking at the
critical circuits of Ã.

The discrepancy between the two approaches—that the approach derived in this
paper is based on the acyclic nodes whereas the heuristic approach is based on the
cyclic nodes—turns out to be cosmetic. To see this consider equation (14) and expand
Ã using equation (15). Using equation (13) and associativity we have

x̃(k) = B∗
0 ⊗ b0 ⊗ x(c)(k).

7Note that this is to be found on page 105 of the 1996 edition, but was taken out of the subsequent
edition.
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Multiplication from the left by b1, using equation (13) again, now gives an evolution
equation for x(c)(k)

x(c)(k + 1) = b1 ⊗ B∗
0 ⊗ b0 ⊗ x(c)(k).

Now we have an evolution determined by iteration of the matrix

(16) A(c) def
= b1 ⊗ B∗

0 ⊗ b0,

which is nc × nc, that is, we have a theory based on the cyclic nodes.
This equivalence is not as surprising as it might seem at first sight. It is a conse-

quence of the overall periodicity of the problem. Indeed, if we take powers of these
two matrices—as when generating x(c)(k) or x̃(k) by iteration—we see that they are
very closely related (semi-conjugate):

A(c)⊗k ⊗ b1 = b1 ⊗ Ã⊗k.

The result is, however, clear. We now have a theory based on the cyclic nodes, and
the argument made above which interpreted the matrix elements of Ã in terms of
the heuristic, applies equally well to the matrix elements of A(c) (since the matrices
are cyclic permutations of the same factors). We have, therefore, a mathematically
rigorous approach to time borrowing which is exactly equivalent to the ‘heuristic
method’ used by the early ARM designers.
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