Automorphisms of finite p-groups admitting a partition

Khukhro, E. I.

2012

MIMS EPrint: 2012.100

Manchester Institute for Mathematical Sciences
School of Mathematics
The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/

And by contacting: The MIMS Secretary
School of Mathematics
The University of Manchester
Manchester, M13 9PL, UK

ISSN 1749-9097
Automorphisms of finite p-groups admitting a partition

E. I. Khukhro

March 2012
Finite p-groups with a partition

Henceforth, P is a finite p-group.

Equivalent definitions:

(a) $P = \bigcup P_i$ for some $P_i < P$ such that $P_i \cap P_j = 1$;
Finite p-groups with a partition

Henceforth, P is a finite p-group.

Equivalent definitions:

(a) $P = \bigcup P_i$ for some $P_i < P$ such that $P_i \cap P_j = 1$;

(b) $P \neq H_p(P) := \langle g \in P \mid g^p \neq 1 \rangle$ (proper Hughes subgroup);
Finite p-groups with a partition

Henceforth, P is a finite p-group.

Equivalent definitions:

(a) $P = \bigcup P_i$ for some $P_i < P$ such that $P_i \cap P_j = 1$;
(b) $P \neq H_p(P) := \langle g \in P \mid g^p \neq 1 \rangle$ (proper Hughes subgroup);
(c) $P = P_1 \rtimes \langle \varphi \rangle$, where $\varphi^p = 1$ and $xx^\varphi x^{\varphi^2} \cdots x^{\varphi^{p-1}} = 1$ for all $x \in P$ (splitting automorphism of P_1).
Finite p-groups with a partition

Henceforth, P is a finite p-group.

Equivalent definitions:

(a) $P = \bigcup P_i$ for some $P_i < P$ such that $P_i \cap P_j = 1$;

(b) $P \neq H_p(P) := \langle g \in P \mid g^p \neq 1 \rangle$ (proper Hughes subgroup);

(c) $P = P_1 \rtimes \langle \varphi \rangle$, where $\varphi^p = 1$ and $xx^\varphi x^{\varphi^2} \cdots x^{\varphi^{p-1}} = 1$ for all $x \in P$ (splitting automorphism of P_1).

Such groups generalize (are close to) groups of exponent p:

outside a proper subgroup all elements are of order p,
Finite \(p \)-groups with a partition

Henceforth, \(P \) is a finite \(p \)-group.

Equivalent definitions:

(a) \(P = \bigcup P_i \) for some \(P_i < P \) such that \(P_i \cap P_j = 1 \);

(b) \(P \neq H_p(P) := \langle g \in P \mid g^p \neq 1 \rangle \) (proper Hughes subgroup);

(c) \(P = P_1 \rtimes \langle \varphi \rangle \), where \(\varphi^p = 1 \) and \(xx^{\varphi}x^{\varphi^2} \cdots x^{\varphi^{p-1}} = 1 \) for all \(x \in P \) (splitting automorphism of \(P_1 \)).

Such groups generalize (are close to) groups of exponent \(p \):

outside a proper subgroup all elements are of order \(p \),

and \(\varphi = 1 \Rightarrow \) exponent \(p \).
Finite \(p \)-groups with a partition

Henceforth, \(P \) is a finite \(p \)-group.

Equivalent definitions:

(a) \(P = \bigcup P_i \) for some \(P_i < P \) such that \(P_i \cap P_j = 1 \);

(b) \(P \neq H_p(P) := \langle g \in P \mid g^p \neq 1 \rangle \) (proper Hughes subgroup);

(c) \(P = P_1 \rtimes \langle \varphi \rangle \), where \(\varphi^p = 1 \) and \(xx^\varphi x^{\varphi^2} \cdots x^{\varphi^{p-1}} = 1 \) for all \(x \in P \) (splitting automorphism of \(P_1 \)).

Such groups generalize (are close to) groups of exponent \(p \):

outside a proper subgroup all elements are of order \(p \),

and \(\varphi = 1 \Rightarrow \) exponent \(p \).

(But there is no bound for the exponent of a \(p \)-group with a partition.)
Splitting automorphism approach

Splitting automorphism approach of condition (c) turned out to be most efficient. Recall:

\[(c) \quad P = P_1 \rtimes \langle \varphi \rangle, \text{ where}\]

\[\varphi^p = 1 \quad \text{and} \quad xx^\varphi x^{\varphi^2} \cdots x^{\varphi^{p-1}} = 1 \quad \text{for all} \quad x \in P\]

\[(\ast) \quad (\varphi \text{ is a splitting automorphism of } P_1).\]
Splitting automorphism approach

Splitting automorphism approach of condition (c) turned out to be most efficient. Recall:

(c) \(P = P_1 \rtimes \langle \varphi \rangle \), where

\[\varphi^p = 1 \text{ and } xx^\varphi x^{\varphi^2} \cdots x^{\varphi^{p-1}} = 1 \text{ for all } x \in P \] \((*)\)

(\(\varphi \) is a splitting automorphism of \(P_1 \)).

(Note that we do not exclude the case where \(\varphi \) acts trivially on \(P_1 \), when, of course, \(P_1 \) must have exponent \(p \).)
Splitting automorphism approach

Splitting automorphism approach of condition (c) turned out to be most efficient. Recall:

(c) \(P = P_1 \rtimes \langle \varphi \rangle \), where

\[
\varphi^p = 1 \text{ and } xx^\varphi x^{\varphi^2} \cdots x^{\varphi^{p-1}} = 1 \text{ for all } x \in P
\]

\((\varphi \text{ is a splitting automorphism of } P_1)\).

(Note that we do not exclude the case where \(\varphi \) acts trivially on \(P_1 \), when, of course, \(P_1 \) must have exponent \(p \).)

All groups with a splitting automorphism of order \(p \) form a variety of groups with operators defined by the laws \((*)\).
Analogues of theorems on group of exponent p

Analogues of theorems on group of exponent p are natural for finite p-groups with a partition (equivalently, for p-groups with a splitting automorphism of order p).

Recall: (c) $P = P_1 \rtimes \langle \varphi \rangle$, where $\varphi^p = 1$ and $x\varphi x\varphi^2 \cdots x\varphi^{p-1} = 1$ for all $x \in P$.

For example, EKh-1981: if P_1 in condition (c) has derived length d, then P_1 is nilpotent of (p, d)-bounded class.

Plus, based on Kostrikin's theorem for groups of prime exponent, EKh-1986: analogue of the affirmative solution of the Restricted Burnside Problem: the nilpotency class of P_1 is bounded in terms of p and the number of generators.

As a corollary, a positive solution for the Hughes problem was obtained for "almost all" finite p-groups.
Analogues of theorems on group of exponent p

Analogues of theorems on group of exponent p are natural for finite p-groups with a partition (equivalently, for p-groups with a splitting automorphism of order p).

Recall: (c) $P = P_1 \rtimes \langle \varphi \rangle$, where $\varphi^p = 1$ and $x\varphi x\varphi^2 \cdots x\varphi^{p-1} = 1$ for all $x \in P$.
Analogues of theorems on group of exponent p

Analogues of theorems on group of exponent p are natural for finite p-groups with a partition (equivalently, for p-groups with a splitting automorphism of order p).

Recall: (c) $P = P_1 \times \langle \varphi \rangle$, where $\varphi^p = 1$ and $xx\varphi x\varphi^2 \cdots x\varphi^{p-1} = 1$ for all $x \in P$.

For example, EKh-1981: if P_1 in condition (c) has derived length d, then P_1 is nilpotent of (p, d)-bounded class.

Plus, based on Kostrikin's theorem for groups of prime exponent, EKh-1986: analogue of the affirmative solution of the Restricted Burnside Problem: the nilpotency class of P_1 is bounded in terms of p and the number of generators.

As a corollary, a positive solution for the Hughes problem was obtained for "almost all" finite p-groups.
Analogues of theorems on group of exponent p

Analogues of theorems on group of exponent p
are natural for finite p-groups with a partition
(equivalently, for p-groups with a splitting automorphism of order p).

Recall: (c) $P = P_1 \rtimes \langle \varphi \rangle$, where $\varphi^p = 1$ and $xx^\varphi x^{\varphi^2} \cdots x^{\varphi^{p-1}} = 1$ for all $x \in P$.

For example, EKh-1981: if P_1 in condition (c) has derived length d, then P_1 is nilpotent of (p, d)-bounded class.

Plus, based on Kostrikin’s theorem for groups of prime exponent, EKh-1986: analogue of the affirmative solution of the Restricted Burnside Problem: the nilpotency class of P_1 is bounded in terms of p and the number of generators.
Analogues of theorems on group of exponent p

Analogues of theorems on group of exponent p are natural for finite p-groups with a partition (equivalently, for p-groups with a splitting automorphism of order p).

Recall: (c) $P = P_1 \rtimes \langle \varphi \rangle$, where $\varphi^p = 1$ and $xx\varphi x\varphi^2 \cdots x\varphi^{p-1} = 1$ for all $x \in P$.

For example, EKh-1981: if P_1 in condition (c) has derived length d, then P_1 is nilpotent of (p, d)-bounded class.

Plus, based on Kostrikin’s theorem for groups of prime exponent, EKh-1986: analogue of the affirmative solution of the Restricted Burnside Problem: the nilpotency class of P_1 is bounded in terms of p and the number of generators.

As a corollary, a positive solution for the Hughes problem was obtained for “almost all” finite p-groups.
Nilpotency class depending on automorphisms

EKh–Shumyatsky, 1995: if a finite group G of exponent p admits a soluble group of automorphisms A of coprime order such that the fixed-point subgroup $C_G(A)$ is soluble of derived length d, then G is nilpotent of $(p, d, |A|)$-bounded class.
Nilpotency class depending on automorphisms

EKh–Shumyatsky, 1995: if a finite group G of exponent p admits a soluble group of automorphisms A of coprime order such that the fixed-point subgroup $C_G(A)$ is soluble of derived length d, then G is nilpotent of $(p, d, |A|)$-bounded class.

Theorem 1

Suppose that a finite p-group P with a partition admits a soluble group of automorphisms A of coprime order such that $C_P(A)$ has derived length d. Then any maximal subgroup of P containing $H_p(P)$ is nilpotent of $(p, d, |A|)$-bounded class.
Nilpotency class depending on automorphisms

EKh–Shumyatsky, 1995: if a finite group G of exponent p admits a soluble group of automorphisms A of coprime order such that the fixed-point subgroup $C_G(A)$ is soluble of derived length d, then G is nilpotent of $(p, d, |A|)$-bounded class.

Theorem 1

Suppose that a finite p-group P with a partition admits a soluble group of automorphisms A of coprime order such that $C_P(A)$ has derived length d. Then any maximal subgroup of P containing $H_p(P)$ is nilpotent of $(p, d, |A|)$-bounded class.

Note: the nilpotency class of the whole group P cannot be bounded.
Nilpotency class depending on automorphisms

EKh–Shumyatsky, 1995: if a finite group G of exponent p admits a soluble group of automorphisms A of coprime order such that the fixed-point subgroup $C_G(A)$ is soluble of derived length d, then G is nilpotent of $(p, d, |A|)$-bounded class.

Theorem 1

Suppose that a finite p-group P with a partition admits a soluble group of automorphisms A of coprime order such that $C_P(A)$ has derived length d. Then any maximal subgroup of P containing $H_p(P)$ is nilpotent of $(p, d, |A|)$-bounded class.

Note: the nilpotency class of the whole group P cannot be bounded.

The bound for the nilpotency class of that maximal subgroup can be chosen the same as in EKh–Shumyatsky-95 for groups of exponent p.
Exponent

Theorem 2

If a finite p-group P with a partition admits a group of automorphisms A that acts faithfully on $P/H_p(P)$, then the exponent of P is bounded in terms of the exponent of $C_P(A)$.

E. I. Khukhro (Inst. Math., Novosibirsk)
Corollary

Suppose that a finite group G admits a Frobenius group of automorphisms FH with cyclic kernel $F = \langle \varphi \rangle$ of prime order p such that φ is a splitting automorphism, that is, $x x^\varphi x^{\varphi^2} \cdots x^{\varphi^{p-1}} = 1$ for all $x \in G$.

Corollary

Suppose that a finite group G admits a Frobenius group of automorphisms FH with cyclic kernel $F = \langle \varphi \rangle$ of prime order p such that φ is a splitting automorphism, that is, $xx^\varphi x^{\varphi^2} \cdots x^{\varphi^{p-1}} = 1$ for all $x \in G$.

(a) If $C_G(H)$ is soluble of derived length d, then G is nilpotent of (p, d)-bounded class.
Frobenius groups of automorphisms

Corollary

Suppose that a finite group G admits a Frobenius group of automorphisms FH with cyclic kernel $F = \langle \varphi \rangle$ of prime order p such that φ is a splitting automorphism, that is, $xx^{\varphi}x^{\varphi^2} \cdots x^{\varphi^{p-1}} = 1$ for all $x \in G$.

(a) If $C_G(H)$ is soluble of derived length d, then G is nilpotent of (p, d)-bounded class.

(b) The exponent of G is bounded in terms of p and the exponent of $C_G(H)$.
Proof of Corollary

The group G is nilpotent by Kegel–Thompson–Hughes. ϕ is fixed-point-free on G^p: for any $g \in C_G(\phi)$ we have

$$1 = g g \phi g \phi^2 \cdots g \phi^{p-1} = g^p.$$

Hence G^p is nilpotent of p-bounded class by Higman–Kreknin–Kostrikin.

For (a) it now remains to consider the Sylow p-subgroup G^p of G. The result follows from Theorem 1 applied to $P = G^p \langle \phi \rangle$ and $A = H$.

By a lemma in EKh–Makarenko–Shumyatsky-2010

$$G^p = \langle C_G^p(H)^f \mid f \in F \rangle.$$

So G^p is generated by elements of orders dividing the exponent of $C_G(H)$.

Plus p-bounded nilpotency class of G^p \Rightarrow exponent of G^p is bounded in terms of p and exponent of $C_G(H)$.

So in (b) it remains to consider G^p. The result follows from Theorem 2 applied to $P = G^p \langle \phi \rangle$ and $A = H$.
Proof of Corollary

The group G is nilpotent by Kegel–Thompson–Hughes.
Proof of Corollary

The group G is nilpotent by Kegel–Thompson–Hughes. φ is fixed-point-free on $G_{p'}$: for any $g \in C_G(\varphi)$ we have $1 = gg^{\varphi}g^{\varphi^2} \cdots g^{\varphi^{p-1}} = g^p$.

Hence $G_{p'}$ is nilpotent of p-bounded class by Higman–Kreknin–Kostrikin. For (a) it now remains to consider the Sylow p-subgroup $G_{p'}$ of G. The result follows from Theorem 1 applied to $P = G_{p'}\langle \varphi \rangle$ and $A = H$.

By a lemma in EKh–Makarenko–Shumyatsky-2010 $G_{p'} = \langle C_{G_{p'}}(H) f \mid f \in F \rangle$. So $G_{p'}$ is generated by elements of orders dividing the exponent of $C_{G_{p'}}(H)$.

Plus p-bounded nilpotency class of $G_{p'} \Rightarrow$ exponent of $G_{p'}$ is bounded in terms of p and exponent of $C_{G_{p'}}(H)$.

So in (b) it remains to consider $G_{p'}$. The result follows from Theorem 2 applied to $P = G_{p'}\langle \varphi \rangle$ and $A = H$.

Proof of Corollary

The group G is nilpotent by Kegel–Thompson–Hughes. φ is fixed-point-free on $G_{p'}$: for any $g \in C_G(\varphi)$ we have
\[1 = gg^2 \cdots g^{p-1} = g^p. \]
Hence $G_{p'}$ is nilpotent of p-bounded class by Higman–Kreknin–Kostrikin.
The group G is nilpotent by Kegel–Thompson–Hughes. φ is fixed-point-free on $G_{p'}$: for any $g \in C_G(\varphi)$ we have $1 = gg\varphi g^{\varphi^2} \cdots g^{\varphi^{p-1}} = g^p$. Hence $G_{p'}$ is nilpotent of p-bounded class by Higman–Kreknin–Kostrikin.

For (a) it now remains to consider the Sylow p-subgroup G_p of G. The result follows from Theorem 1 applied to $P = G_p\langle \varphi \rangle$ and $A = H$.

Proof of Corollary

The group G is nilpotent by Kegel–Thompson–Hughes. \(\varphi \) is fixed-point-free on $G^{p'}$: for any $g \in C_G(\varphi)$ we have

$$1 = gg^\varphi g^{\varphi^2} \cdots g^{\varphi^{p-1}} = g^p.$$

Hence $G^{p'}$ is nilpotent of p-bounded class by Higman–Kreknin–Kostrikin.

For (a) it now remains to consider the Sylow p-subgroup G_p of G. The result follows from Theorem 1 applied to $P = G_p\langle \varphi \rangle$ and $A = H$.

By a lemma in EKh–Makarenko–Shumyatsky-2010

$$G_p^{p'} = \langle C_{G_p}(H)^f \mid f \in F \rangle.$$
Proof of Corollary

The group G is nilpotent by Kegel–Thompson–Hughes. φ is fixed-point-free on $G_{p'}$: for any $g \in C_G(\varphi)$ we have

$$1 = gg^\varphi g^{\varphi^2} \cdots g^{\varphi^{p-1}} = g^p.$$

Hence $G_{p'}$ is nilpotent of p-bounded class by Higman–Kreknin–Kostrikin.

For (a) it now remains to consider the Sylow p-subgroup G_p of G. The result follows from Theorem 1 applied to $P = G_p\langle \varphi \rangle$ and $A = H$.

By a lemma in EKh–Makarenko–Shumyatsky-2010

$$G_{p'} = \langle C_{G_{p'}}(H)^f \mid f \in F \rangle.$$

So $G_{p'}$ is generated by elements of orders dividing the exponent of $C_G(H)$.
Proof of Corollary

The group G is nilpotent by Kegel–Thompson–Hughes. \(\varphi \) is fixed-point-free on $G_{p'}$: for any $g \in C_G(\varphi)$ we have
\[
1 = gg\varphi g\varphi^2 \cdots g\varphi^{p-1} = g^p.
\]
Hence $G_{p'}$ is nilpotent of p-bounded class by Higman–Kreknin–Kostrikin.

For (a) it now remains to consider the Sylow p-subgroup G_p of G. The result follows from Theorem 1 applied to $P = G_p\langle \varphi \rangle$ and $A = H$.

By a lemma in EKh–Makarenko–Shumyatsky-2010
\[
G_{p'} = \langle C_{G_{p'}}(H)^f | f \in F \rangle.
\]
So $G_{p'}$ is generated by elements of orders dividing the exponent of $C_G(H)$.

Plus p-bounded nilpotency class of $G_{p'} \Rightarrow$ exponent of $G_{p'}$ is bounded in terms of p and exponent of $C_G(H)$.
Proof of Corollary

The group \(G \) is nilpotent by Kegel–Thompson–Hughes. \(\varphi \) is fixed-point-free on \(G_p' \): for any \(g \in C_G(\varphi) \) we have
\[
1 = gg^\varphi g^{\varphi^2} \cdots g^{\varphi^{p-1}} = g^p.
\]
Hence \(G_p' \) is nilpotent of \(p \)-bounded class by Higman–Kreknin–Kostrikin.

For (a) it now remains to consider the Sylow \(p \)-subgroup \(G_p \) of \(G \). The result follows from Theorem 1 applied to \(P = G_p\langle \varphi \rangle \) and \(A = H \).

By a lemma in EKh–Makarenko–Shumyatsky-2010
\[
G_{p'} = \langle C_{G_{p'}}(H)^f \mid f \in F \rangle.
\]
So \(G_{p'} \) is generated by elements of orders dividing the exponent of \(C_G(H) \).

Plus \(p \)-bounded nilpotency class of \(G_{p'} \) \(\Rightarrow \) exponent of \(G_{p'} \) is bounded in terms of \(p \) and exponent of \(C_G(H) \).

So in (b) it remains to consider \(G_p \). The result follows from Theorem 2 applied to \(P = G_p\langle \varphi \rangle \) and \(A = H \).
Comments on Frobenius groups of automorphisms

Examples show that dependence of the nilpotency class on p is essential in part (a) of Corollary
Comments on Frobenius groups of automorphisms

Examples show that dependence of the nilpotency class on p is essential in part (a) of Corollary (obviously also true for exponent in part (b)).
Comments on Frobenius groups of automorphisms

Examples show that dependence of the nilpotency class on \(p \) is essential in part (a) of Corollary (obviously also true for exponent in part (b)).

Recent papers of EKh, Makarenko, Shumyatsky on finite groups \(G \) with a Frobenius group of automorphisms \(FH \) with fixed-point-free kernel \(F \):
Comments on Frobenius groups of automorphisms

Examples show that dependence of the nilpotency class on p is essential in part (a) of Corollary (obviously also true for exponent in part (b)).

Recent papers of EKh, Makarenko, Shumyatsky on finite groups G with a Frobenius group of automorphisms FH with fixed-point-free kernel F: Mazurov’s problem 17.72(a) from Kourovka Notebook was solved in the affirmative,
Comments on Frobenius groups of automorphisms

Examples show that dependence of the nilpotency class on p is essential in part (a) of Corollary (obviously also true for exponent in part (b)).

Recent papers of EKh, Makarenko, Shumyatsky on finite groups G with a Frobenius group of automorphisms FH with fixed-point-free kernel F:

Mazurov’s problem 17.72(a) from Kourovka Notebook was solved in the affirmative, and moreover, for any metacyclic Frobenius group of automorphisms FH and nilpotent G, a bound for the nilpotency class of G was obtained in terms of $|H|$ and the nilpotency class of $C_G(H)$,
Examples show that dependence of the nilpotency class on p is essential in part (a) of Corollary (obviously also true for exponent in part (b)).

Recent papers of EKh, Makarenko, Shumyatsky on finite groups G with a Frobenius group of automorphisms FH with fixed-point-free kernel F:

Mazurov’s problem 17.72(a) from Kourovka Notebook was solved in the affirmative, and moreover, for any metacyclic Frobenius group of automorphisms FH and nilpotent G, a bound for the nilpotency class of G was obtained in terms of $|H|$ and the nilpotency class of $C_G(H)$, as well as a bound for the exponent of G in terms of $|FH|$ and the exponent of $C_G(H)$.
Question

Question: can results like Corollary be obtained for Frobenius groups of automorphisms with kernel generated by a splitting automorphism of composite order?
Question

Question: can results like Corollary be obtained for Frobenius groups of automorphisms with kernel generated by a splitting automorphism of composite order?

Examples show that nilpotency class cannot be bounded (even for cyclic kernel of order p^2 generated by a splitting automorphism and complement of order 2 with abelian fixed points).
Question

Question: can results like Corollary be obtained for Frobenius groups of automorphisms with kernel generated by a splitting automorphism of composite order?

Examples show that nilpotency class cannot be bounded (even for cyclic kernel of order p^2 generated by a splitting automorphism and complement of order 2 with abelian fixed points).

Question remains open for the exponent, as well as for the derived length.
Proof of Theorem 1: elimination of automorphisms by nilpotency

Proof of Theorem 1 uses a modification of the method of elimination of automorphisms by nilpotency, which was used in EKh-1991 earlier in the study of splitting automorphisms of prime order.
Proof of Theorem 1: elimination of automorphisms by nilpotency

Proof of Theorem 1 uses a modification of the method of elimination of automorphisms by nilpotency, which was used in EKh-1991 earlier in the study of splitting automorphisms of prime order.

Reduction by known results to the main case:
Proof of Theorem 1: elimination of automorphisms by nilpotency

Proof of Theorem 1 uses a modification of the method of elimination of automorphisms by nilpotency, which was used in EKh-1991 earlier in the study of splitting automorphisms of prime order.

Reduction by known results to the main case:

Theorem 1'

Suppose that a soluble group FA with normal Sylow p-subgroup $F = \langle \varphi \rangle$ of order p and Hall p'-subgroup A acts by automorphisms on a finite p-group G in such a manner that φ is a splitting automorphism, that is, $xx^\varphi x^{\varphi^2} \cdots x^{\varphi^{p-1}} = 1$ for all $x \in G$. If $C_G(A)$ is soluble of derived length d, then G is nilpotent of $(p, d, |A|)$-bounded class.
Proof of Theorem 1: elimination of automorphisms by nilpotency

Proof of Theorem 1 uses a modification of the method of elimination of automorphisms by nilpotency, which was used in EKh-1991 earlier in the study of splitting automorphisms of prime order.

Reduction by known results to the main case:

Theorem 1'

Suppose that a soluble group FA with normal Sylow p-subgroup $F = \langle \varphi \rangle$ of order p and Hall p'-subgroup A acts by automorphisms on a finite p-group G in such a manner that φ is a splitting automorphism, that is, $xx\varphi x^{\varphi^2} \cdots x^{\varphi^{p-1}} = 1$ for all $x \in G$. If $C_G(A)$ is soluble of derived length d, then G is nilpotent of $(p, d, |A|)$-bounded class. Furthermore, the bound for the nilpotency class can be chosen to be the same as in the case $\varphi = 1$ (given by EKh-Shumyatsky-95).
Free \mathcal{FA}-group

The trick of elimination of automorphisms requires passing to a free \mathcal{FA}-group $X = \langle x_1, x_2, \ldots \rangle$ of some exponent p^M and some nilpotency class N.
Free FA-group

The trick of elimination of automorphisms requires passing to a free FA-group $X = \langle x_1, x_2, \ldots \rangle$ of some exponent p^M and some nilpotency class N.

There is an FA-homomorphism $\xi : X \to G$ given by $x_i \to g_i$ for any $g_i \in G$ (provided M, N are a large enough.)
Free FA-group

The trick of elimination of automorphisms requires passing to a free FA-group $X = \langle x_1, x_2, \ldots \rangle$ of some exponent p^M and some nilpotency class N.

There is an FA-homomorphism $\xi : X \to G$ given by $x_i \to g_i$ for any $g_i \in G$ (provided M, N are a large enough.)

Let C be the FA-invariant normal closure of $(C_X(A))(^d)$.
The trick of elimination of automorphisms requires passing to a free \mathcal{FA}-group $X = \langle x_1, x_2, \ldots \rangle$ of some exponent p^M and some nilpotency class N.

There is an \mathcal{FA}-homomorphism $\xi : X \to G$ given by $x_i \to g_i$ for any $g_i \in G$ (provided M, N are a large enough.)

Let C be the \mathcal{FA}-invariant normal closure of $(C_X(A))^{(d)}$.

Let S be the \mathcal{FA}-invariant normal closure of all $xx^\varphi x^{\varphi^2} \cdots x^{\varphi^{p-1}}$.

Free FA-group

The trick of elimination of automorphisms requires passing to a free FA-group $X = \langle x_1, x_2, \ldots \rangle$ of some exponent p^M and some nilpotency class N.

There is an FA-homomorphism $\xi : X \to G$ given by $x_i \to g_i$ for any $g_i \in G$ (provided M, N are a large enough.)

Let C be the FA-invariant normal closure of $(C_X(A))^{(d)}$.

Let S be the FA-invariant normal closure of all $xx^\varphi x^\varphi^2 \cdots x^\varphi^{p-1}$.

Clearly, $C, S \leq Ker \xi$ by hypothesis.
Free FA-group

The trick of elimination of automorphisms requires passing to a free FA-group $X = \langle x_1, x_2, \ldots \rangle$ of some exponent p^M and some nilpotency class N.

There is an FA-homomorphism $\xi : X \to G$ given by $x_i \to g_i$ for any $g_i \in G$ (provided M, N are a large enough.)

Let C be the FA-invariant normal closure of $(C_x(A))^{(d)}$.

Let S be the FA-invariant normal closure of all $xx^\varphi x^{\varphi^2} \cdots x^{\varphi^{p-1}}$.

Clearly, $C, S \leq \text{Ker } \xi$ by hypothesis.

Lemma

The subgroups C and S are invariant under any FA-endomorphism ϑ of X.
Trivialization of F

Since there is an FA-homomorphism $\xi : X \to G$ with $C, S \leq \text{Ker} \, \xi$, it is sufficient (and even necessary) to prove that $\left[x_1, \ldots, x_{c+1}\right] \in CS$, where c is the nilpotency class given by EKh-Shumyatsky theorem when $\varphi = 1$.
Trivialization of F

Since there is an FA-homomorphism $\xi : X \to G$ with $C, S \leq \text{Ker} \, \xi$, it is sufficient (and even necessary) to prove that

$$[x_1, \ldots, x_{c+1}] \in CS,$$

where c is the nilpotency class given by EKh-Shumyatsky theorem when $\varphi = 1$.

Let $T = [X, F]F$ (“trivialization of F”)
Trivialization of F

Since there is an FA-homomorphism $\xi : X \to G$ with $C, S \leq \text{Ker} \xi$, it is sufficient (and even necessary) to prove that

$$[x_1, \ldots, x_{c+1}] \in CS,$$

where c is the nilpotency class given by EKh-Shumyatsky theorem when $\varphi = 1$.

Let $T = [X, F]F$ ("trivialization of F")

By EKh-Shumyatsky theorem, $[x_1, \ldots, x_{c+1}] \in CST$,

that is, we need to eliminate T.

E. I. Khukhro (Inst. Math., Novosibi)
Higman’s lemma

We have
\[[x_1, \ldots, x_{c+1}] \equiv c_1^{k_1} \cdots c_m^{k_m} \pmod{CS}, \text{ where } c_i \in T. \]
Higman’s lemma

We have
\[[x_1, \ldots, x_{c+1}] \equiv c_1^{k_1} \cdots c_m^{k_m} \pmod{CS}, \text{ where } c_i \in T. \]

An analogue of Higman’s lemma gives that we can assume that each \(c_i \) depends on all \(x_1, \ldots, x_{c+1} \), and on \(\varphi \).
Higman’s lemma

We have
\[[x_1, \ldots, x_{c+1}] \equiv c_1^{k_1} \cdots c_m^{k_m} \pmod{CS}, \text{ where } c_i \in T. \]

An analogue of Higman’s lemma gives that we can assume that each \(c_i \) depends on all \(x_1, \ldots, x_{c+1} \), and on \(\varphi \).

One can show that we can furthermore assume that each \(c_i \) has the form
\[
[[x_{a^*_i}, \ldots], [x_{a^*_i}, \ldots], \ldots, [x_{a^*_i}, \ldots]] \quad (a_* \in A),
\]
where \(\{i_1, i_2, \ldots, i_{c+1}\} = \{1, 2, \ldots, c+1\} \) and there is at least one \(\varphi \) among “dots” in at least one of the subcommutators \([x_{i_k}^{a_*}, \ldots] \).
Self-amplification process

\[[x_1, \ldots, x_{c+1}] \equiv c_1^{k_1} \cdots c_m^{k_m} \pmod{CS} \] (*
Self-amplification process

\[[x_1, \ldots, x_{c+1}] \equiv c_1^{k_1} \cdots c_m^{k_m} \pmod{CS} \]

We “iterate”, “self-amplify”: by homomorphisms of the type

\[x_k \rightarrow [x^{a_k}_1, \ldots], \quad k = 1, \ldots, c + 1 \]

we express each \(c_i = [[x^{a_i}_{i_1}, \ldots], \ldots, [x^{a_i}_{c+1}, \ldots]] \) as the image of the left-hand-side.

Since \(X_\langle \phi \rangle \) is nilpotent (being a finite \(p \)-group!), in the end we get

\[\equiv 1, \text{ as required}. \]
Self-amplification process

\[[x_1, \ldots, x_{c+1}] \equiv c_1^{k_1} \cdots c_m^{k_m} \pmod{CS} \]

(\ast)

We “iterate”, “self-amplify”: by homomorphisms of the type

\[x_k \to [x_{i_k}^{a_k}, \ldots], \quad k = 1, \ldots, c + 1 \]

we express each \(c_i = [[x_{i_1}^{a_{i_1}}, \ldots], \ldots, [x_{i_{c+1}}^{a_{i_{c+1}}}, \ldots]] \) as the image of the left-hand-side,

then substitute the result into right-hand side of the original (\ast).
Self-amplification process

\[[x_1, \ldots, x_{c+1}] \equiv c_1^{k_1} \cdots c_m^{k_m} \pmod{CS} \]

We “iterate”, “self-amplify”: by homomorphisms of the type

\[x_k \rightarrow [x_k^{a_k}, \ldots], \quad k = 1, \ldots, c + 1 \]

we express each \(c_i = [[x_i^{a_1}, \ldots], \ldots, [x_i^{a_c}, \ldots]] \) as the image of the left-hand-side,

then substitute the result into right-hand side of the original (*)

As a result, the new (*) has the same form but now each new \(c_i \) has at least two occurrences of \(\varphi \).
Self-amplification process

\[[x_1, \ldots, x_{c+1}] \equiv c_1^{k_1} \cdots c_m^{k_m} \pmod{CS} \] (\(*\))

We “iterate”, “self-amplify”: by homomorphisms of the type

\[x_k \rightarrow [x_{i_k}^{a_*}, \ldots], \quad k = 1, \ldots, c + 1 \]

we express each \(c_i = [[x_{i_1}^{a_*}, \ldots], \ldots, [x_{i_{c+1}}^{a_*}, \ldots]] \) as the image of the left-hand-side,

then substitute the result into right-hand side of the original (\(*\)).

As a result, the new (\(*\)) has the same form but now each new \(c_i \) has at least two occurrences of \(\varphi \).

And so on, at each step we double the number of occurrences of \(\varphi \) in the new \(c_i \).
Self-amplification process

\[[x_1, \ldots, x_{c+1}] \equiv c_1^{k_1} \cdots c_m^{k_m} \pmod{CS} \]

(*)

We “iterate”, “self-amplify”: by homomorphisms of the type

\[x_k \to [x_{i_k}^{a_*}, \ldots], \quad k = 1, \ldots, c + 1 \]

we express each \(c_i = [[x_{i_1}^{a_*}, \ldots], \ldots, [x_{i_{c+1}}^{a_*}, \ldots]] \) as the image of the left-hand-side,

then substitute the result into right-hand side of the original (*)

As a result, the new (*) has the same form but now each new \(c_i \) has at least two occurrences of \(\varphi \).

And so on, at each step we double the number of occurrences of \(\varphi \) in the new \(c_i \).

Since \(X\langle \varphi \rangle \) is nilpotent (being a finite \(p \)-group!), in the end we get \(\equiv 1 \), as required.
Proof of exponent theorem.

By known results, proof of Theorem 2 reduces to the following result.

Theorem 2’

If a finite p-group G admits a Frobenius group of automorphisms FA with kernel $F = \langle \varphi \rangle$ of order p and complement A such that φ is a splitting automorphism, that is, $xx^\varphi x^{\varphi^2} \cdots x^{\varphi^{p-1}} = 1$ for all $x \in G$, then the exponent of P is bounded in terms of the exponent of $C_P(A)$.
Proof of exponent theorem.

By known results, proof of Theorem 2 reduces to the following result.

Theorem 2'

If a finite p-group G admits a Frobenius group of automorphisms FA with kernel $F = \langle \varphi \rangle$ of order p and complement A such that φ is a splitting automorphism, that is, $x\varphi x\varphi^2 \cdots x\varphi^{p-1} = 1$ for all $x \in G$, then the exponent of P is bounded in terms of the exponent of $C_p(A)$.

Since any $g \in G$ belongs to $\langle g^{FA} \rangle$, we can assume that G is generated by $|FA|$ elements.
Proof of exponent theorem.

By known results, proof of Theorem 2 reduces to the following result.

Theorem 2'

If a finite p-group G admits a Frobenius group of automorphisms FA with kernel $F = \langle \varphi \rangle$ of order p and complement A such that φ is a splitting automorphism, that is, $xx\varphi x\varphi^2 \cdots x\varphi^{p-1} = 1$ for all $x \in G$, then the exponent of P is bounded in terms of the exponent of $C_P(A)$.

Since any $g \in G$ belongs to $\langle g^{FA} \rangle$, we can assume that G is generated by $|FA|$ elements.

By EKh-86 affirmative solution to an analogue of the Restricted Burnside Problem for groups with a splitting automorphism of prime order p, the nilpotency class of G is bounded in terms of p and the number of generators, which is at most $p(p - 1)$.
Proof of exponent theorem.

By known results, proof of Theorem 2 reduces to the following result.

Theorem 2′

If a finite p-group G admits a Frobenius group of automorphisms FA with kernel $F = \langle \varphi \rangle$ of order p and complement A such that φ is a splitting automorphism, that is, $xx^\varphi x^{\varphi^2} \cdots x^{\varphi^{p-1}} = 1$ for all $x \in G$, then the exponent of P is bounded in terms of the exponent of $C_P(A)$.

Since any $g \in G$ belongs to $\langle g^FA \rangle$, we can assume that G is generated by $|FA|$ elements.

By EKh-86 affirmative solution to an analogue of the Restricted Burnside Problem for groups with a splitting automorphism of prime order p, the nilpotency class of G is bounded in terms of p and the number of generators, which is at most $p(p - 1)$.

It remains to obtain a bound for the exponent of $V = G/[G, G]$.
Abelian case: eigenspaces.

Consider $V = G/[G, G]$ as a $\mathbb{Z}FA$-module, with additive notation. In particular, $v + v\varphi + v\varphi^2 + \cdots + v\varphi^{p-1} = 0$ for all $v \in V$ by hypothesis.
Abelian case: eigenspaces.

Consider $V = G/[G, G]$ as a $\mathbb{Z}FA$-module, with additive notation. In particular, $v + v\varphi + v\varphi^2 + \cdots + v\varphi^{p-1} = 0$ for all $v \in V$ by hypothesis.

Extend the ground ring by a primitive pth root of unity ω, forming $W = V \otimes \mathbb{Z} [\omega]$. Still have $w + w\varphi + w\varphi^2 + \cdots + w\varphi^{p-1} = 0$ for all $w \in W$.
Abelian case: eigenspaces.

Consider $V = G/[G, G]$ as a $\mathbb{Z}FA$-module, with additive notation. In particular, $v + v\varphi + v\varphi^2 + \cdots + v\varphi^{p-1} = 0$ for all $v \in V$ by hypothesis.

Extend the ground ring by a primitive pth root of unity ω, forming $W = V \otimes_{\mathbb{Z}} \mathbb{Z}[\omega]$. Still have $w + w\varphi + w\varphi^2 + \cdots + w\varphi^{p-1} = 0$ for all $w \in W$.

Define analogues of eigenspaces for the “linear transformation” φ:

$$W_i = \{w \in W \mid w\varphi = \omega^i w\}.$$
Abelian case: eigenspaces.
Consider $V = G/[G, G]$ as a $\mathbb{Z}FA$-module, with additive notation. In particular, $v + v\varphi + v\varphi^2 + \cdots + v\varphi^{p-1} = 0$ for all $v \in V$ by hypothesis.

Extend the ground ring by a primitive pth root of unity ω, forming $W = V \otimes_{\mathbb{Z}} \mathbb{Z}[\omega]$. Still have $w + w\varphi + w\varphi^2 + \cdots + w\varphi^{p-1} = 0$ for all $w \in W$.

Define analogues of eigenspaces for the “linear transformation” φ:

$$W_i = \{ w \in W \mid w\varphi = \omega^i w \}.$$

Then W is an “almost direct sum” of the W_i:

$$pW \subseteq W_0 + W_1 + \cdots + W_{p-1}$$

and

if $w_0 + w_1 + \cdots + w_{p-1} = 0$ for $w_i \in W_i$, then $pw_i = 0$ for all i.
A-orbits.

First: since $\varphi = 1$ on W_0, for $x \in W_0$ we have $px = x + x\varphi + \cdots + x\varphi^{p-1} = 0$, so that $pW_0 = 0$.
First: since \(\varphi = 1 \) on \(W_0 \), for \(x \in W_0 \) we have
\[px = x + x\varphi + \cdots + x\varphi^{p-1} = 0, \]
so that \(pW_0 = 0 \).

Action of \(A \): permutes the \(W_i \) in the same way as it acts on \(\langle \varphi \rangle \).
A-orbits.

First: since $\varphi = 1$ on W_0, for $x \in W_0$ we have $p x = x + x \varphi + \cdots + x \varphi^{p-1} = 0$, so that $p W_0 = 0$.

Action of A: permutes the W_i in the same way as it acts on $\langle \varphi \rangle$.
Let $A = \langle \alpha \rangle$ and let $\varphi^\alpha = \varphi^r$ for some $1 \leq r \leq p - 1$. Let $|\alpha| = n$; then r is a primitive nth root of 1 in $\mathbb{Z}/p\mathbb{Z}$.

E. I. Khukhro (Inst. Math., Novosibii; Automorphisms of finite p-groups adn

March 2012 18 / 22
A-orbits.

First: since $\varphi = 1$ on W_0, for $x \in W_0$ we have $px = x + x\varphi + \cdots + x\varphi^{p-1} = 0$, so that $pW_0 = 0$.

Action of A: permutes the W_i in the same way as it acts on $\langle \varphi \rangle$.
Let $A = \langle \alpha \rangle$ and let $\varphi^{\alpha^{-1}} = \varphi^r$ for some $1 \leq r \leq p - 1$. Let $|\alpha| = n$; then r is a primitive nth root of 1 in $\mathbb{Z}/p\mathbb{Z}$.

A “almost permutes” the W_i:
$W_i\alpha \subseteq W_{ri}$ for all $i \in \mathbb{Z}/p\mathbb{Z}$. Indeed, if $x_i \in W_i$, then
$(x_i\alpha)\varphi = x_i(\alpha\varphi\alpha^{-1}\alpha) = (x_i\varphi^r)\alpha = \omega^{ir}x_i\alpha$.
\textbf{A-orbits.}

First: since $\varphi = 1$ on W_0, for $x \in W_0$ we have $px = x + x\varphi + \cdots + x\varphi^{p-1} = 0$, so that $pW_0 = 0$.

Action of A: permutes the W_i in the same way as it acts on $\langle \varphi \rangle$.
Let $A = \langle \alpha \rangle$ and let $\varphi^{\alpha^{-1}} = \varphi^r$ for some $1 \leq r \leq p - 1$. Let $|\alpha| = n$; then r is a primitive nth root of 1 in $\mathbb{Z}/p\mathbb{Z}$.

A “almost permutes” the W_i:
$W_i \alpha \subseteq W_{ri}$ for all $i \in \mathbb{Z}/p\mathbb{Z}$. Indeed, if $x_i \in W_i$, then
$$(x_i \alpha)\varphi = x_i(\alpha \varphi \alpha^{-1} \alpha) = (x_i \varphi^r)\alpha = \omega^i r x_i \alpha.$$

Given $u_k \in W_k$ for $k \neq 0$, to lighten the notation we denote $u_k \alpha^i$ by $u_{r^i k}$; note that $u_{r^i k} \in W_{r^i k}$.
Let p^e be the exponent of $C_G(A)$. Claim: W_i are annihilated by p^{1+e}.
Let p^e be the exponent of $C_G(A)$. Claim: W_i are annihilated by p^{1+e}.

For any $k \neq 0$ and for any $u_k \in W_k$ we have

$$u_k + u_k \alpha + \cdots + u_k \alpha^{n-1} = u_k + u_{rk} + \cdots + u_{r^{n-1}k} \in CW(A)$$

(the sum over an A-orbit).
Let p^e be the exponent of $C_G(A)$. Claim: W_i are annihilated by p^{1+e}.

For any $k \neq 0$ and for any $u_k \in W_k$ we have

$$u_k + u_k \alpha + \cdots + u_k \alpha^{n-1} = u_k + u_r + \cdots + u_r^{n-1} \in C_W(A)$$

(the sum over an A-orbit). Since $p^eC_V(A) = 0$ (as $C_V(A)$ is the image of $C_G(A)$ by coprimeness of the action), also $p^eC_W(A) = 0$.
Let p^e be the exponent of $C_G(A)$. Claim: W_i are annihilated by p^{1+e}.

For any $k \neq 0$ and for any $u_k \in W_k$ we have

$$u_k + u_k\alpha + \cdots + u_k\alpha^{n-1} = u_k + u_{rk} + \cdots + u_{r^{n-1}k} \in CW(A)$$

(the sum over an A-orbit). Since $p^eC_V(A) = 0$ (as $C_V(A)$ is the image of $C_G(A)$ by coprimeness of the action), also $p^eC_W(A) = 0$. Thus,

$$p^e u_k + p^e u_{rk} + \cdots + p^e u_{r^{n-1}k} = 0.$$
Let \(p^e \) be the exponent of \(C_G(A) \). Claim: \(W_i \) are annihilated by \(p^{1+e} \).

For any \(k \neq 0 \) and for any \(u_k \in W_k \) we have

\[
 u_k + u_k \alpha + \cdots + u_k \alpha^{n-1} = u_k + u_{rk} + \cdots + u_{r^{n-1}k} \in C_W(A)
\]

(the sum over an \(A \)-orbit). Since \(p^e C_V(A) = 0 \) (as \(C_V(A) \) is the image of \(C_G(A) \) by coprimeness of the action), also \(p^e C_W(A) = 0 \). Thus,

\[
 p^e u_k + p^e u_{rk} + \cdots + p^e u_{r^{n-1}k} = 0.
\]

By “almost direct sum”, in particular, \(pp^e u_k = 0 \).
Let p^e be the exponent of $C_G(A)$. Claim: W_i are annihilated by p^{1+e}.

For any $k \neq 0$ and for any $u_k \in W_k$ we have

$$u_k + u_k\alpha + \cdots + u_k\alpha^{n-1} = u_k + u_{rk} + \cdots + u_{r^{n-1}k} \in CW(A)$$

(the sum over an A-orbit). Since $p^eC_V(A) = 0$ (as $C_V(A)$ is the image of $C_G(A)$ by coprimeness of the action), also $p^eCW(A) = 0$. Thus,

$$p^e u_k + p^e u_{rk} + \cdots + p^e u_{r^{n-1}k} = 0.$$

By “almost direct sum”, in particular, $p p^e u_k = 0$.

Recall that $pW_0 = 0$. As a result,

$$p^{2+e}W \subseteq p^{1+e}(W_0 + W_1 + \cdots + W_{p-1}) = 0,$$

so also $p^{2+e}V = 0$.
Let p^e be the exponent of $C_G(A)$. Claim: W_i are annihilated by p^{1+e}.

For any $k \neq 0$ and for any $u_k \in W_k$ we have

$$u_k + u_k \alpha + \cdots + u_k \alpha^{n-1} = u_k + u_{rk} + \cdots + u_{r^{n-1}k} \in CW(A)$$

(the sum over an A-orbit). Since $p^eC_V(A) = 0$ (as $C_V(A)$ is the image of $C_G(A)$ by coprimeness of the action), also $p^eC_W(A) = 0$. Thus,

$$p^e u_k + p^e u_{rk} + \cdots + p^e u_{r^{n-1}k} = 0.$$

By “almost direct sum”, in particular, $pp^e u_k = 0$.

Recall that $pW_0 = 0$. As a result,

$$p^{2+e}W \subseteq p^{1+e}(W_0 + W_1 + \cdots + W_{p-1}) = 0,$$

so also $p^{2+e}V = 0$.

In multiplicative notation, the exponent of $G/[G, G]$ divides p^{2+e},
Let p^e be the exponent of $C_G(A)$. Claim: W_i are annihilated by p^{1+e}.

For any $k \neq 0$ and for any $u_k \in W_k$ we have

$$u_k + u_k \alpha + \cdots + u_k \alpha^{n-1} = u_k + u_{rk} + \cdots + u_{r^{n-1}k} \in CW(A)$$

(the sum over an A-orbit). Since $p^eC_V(A) = 0$ (as $C_V(A)$ is the image of $C_G(A)$ by coprimeness of the action), also $p^eC_W(A) = 0$. Thus,

$$p^e u_k + p^e u_{rk} + \cdots + p^e u_{r^{n-1}k} = 0.$$

By “almost direct sum”, in particular, $pp^e u_k = 0$.

Recall that $pW_0 = 0$. As a result,

$$p^{2+e} W \subseteq p^{1+e} (W_0 + W_1 + \cdots + W_{p-1}) = 0,$$

so also $p^{2+e} V = 0$.

In multiplicative notation, the exponent of $G/[G, G]$ divides p^{2+e}, so the exponent of G divides $p^{c(2+e)}$, where c is the nilpotency class of G, which is bounded in terms of p.

Remark

If, for some reason, it is known that the derived length \(s \) of the group \(G \) in Theorems 1 or 2, or in the Corollary, is relatively small, then EKh-81 can be used instead to give a possibly better estimate

\[
\frac{(p - 1)^s - 1}{p - 2}
\]

for the nilpotency class of \(G \) (in Theorems 1' and 2').
Remark

If, for some reason, it is known that the derived length s of the group G in Theorems 1 or 2, or in the Corollary, is relatively small, then EKh-81 can be used instead to give a possibly better estimate

$$\frac{(p - 1)^s - 1}{p - 2}$$

for the nilpotency class of G (in Theorems 1′ and 2′).

A smaller bound for the nilpotency class would also imply a smaller bound for the exponent.
Generalizations

In EKh-91 general nilpotency theorem was proved: if a group G admits a group of operators Ω such that $G\Omega$ is nilpotent, G satisfies Ω-laws which after $\Omega \to 1$ imply nilpotency of class c,
Generalizations

In EKh-91 general nilpotency theorem was proved: if a group G admits a group of operators Ω such that $G\Omega$ is nilpotent, G satisfies Ω-laws which after $\Omega \to 1$ imply nilpotency of class c, then G is nilpotent of class c.

Similarly, the same arguments as above prove

Theorem 1

Suppose that a soluble group FA with normal Sylow p-subgroup F and Hall p'-subgroup A acts by automorphisms on a finite p-group G in such a manner that for some fixed $\phi_1,...,\phi_p \in F$ we have $x^{\phi_1}x^{\phi_2}...x^{\phi_p}=1$ for all $x \in G$. If $C_G(A)$ is soluble of derived length d, then G is nilpotent of $(p,d,|A|)$-bounded class. Furthermore, the bound for the nilpotency class can be chosen to be the same as in the case $G_p=1$ (given by EKh-Shumyatsky-95).
Generalizations

In EKh-91 general nilpotency theorem was proved: if a group G admits a group of operators Ω such that $G\Omega$ is nilpotent, G satisfies Ω-laws which after $\Omega \to 1$ imply nilpotency of class c, then G is nilpotent of class c.

Similarly, the same arguments as above prove

Theorem 1”

Suppose that a soluble group FA with normal Sylow p-subgroup F and Hall $p’$-subgroup A acts by automorphisms on a finite p-group G in such a manner that for some fixed $\varphi_1, \ldots, \varphi_p \in F$ we have $x^{\varphi_1}x^{\varphi_2}\cdots x^{\varphi_p} = 1$ for all $x \in G$. If $C_G(A)$ is soluble of derived length d, then G is nilpotent of $(p, d, |A|)$-bounded class.
Generalizations

In EKh-91 general nilpotency theorem was proved: if a group G admits a group of operators Ω such that $G\Omega$ is nilpotent, G satisfies Ω-laws which after $\Omega \rightarrow 1$ imply nilpotency of class c, then G is nilpotent of class c.

Similarly, the same arguments as above prove

Theorem 1”

Suppose that a soluble group FA with normal Sylow p-subgroup F and Hall p'-subgroup A acts by automorphisms on a finite p-group G in such a manner that for some fixed $\varphi_1, \ldots, \varphi_p \in F$ we have $x^{\varphi_1}x^{\varphi_2}\cdots x^{\varphi_p} = 1$ for all $x \in G$. If $C_G(A)$ is soluble of derived length d, then G is nilpotent of $(p, d, |A|)$-bounded class. Furthermore, the bound for the nilpotency class can be chosen to be the same as in the case $G^p = 1$ (given by EKh-Shumyatsky-95).
Generalizations

There is also local nilpotency theorem in EKh-93, which may also have generalizations in the context of additional group of automorphisms...