## 2012.7: Local Fusion Graphs for Symmetric Groups

2012.7:
John J Ballantyne, Nicholas M Greer and Peter J Rowley
(2012)
*Local Fusion Graphs for Symmetric Groups.*
Journal of Group Theory.

Full text available as:

PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader 452 Kb |

## Abstract

For a group $G$, $\pi$ a set of odd positive integers and $X$ a set of involutions of $G$ we define a graph $\mathcal{F}_\pi(G,X)$. This graph, called a $\pi$-local fusion graph, has vertex set $X$ with $x,y \in X$ joined by an edge provided $x \neq y$ and the order of $xy$ is in $\pi$. In this paper we investigate $\mathcal{F}_\pi(G,X)$ when $G$ is a finite symmetric group for various choices of $X$ and $\pi$.

Item Type: | Article |
---|---|

Uncontrolled Keywords: | symmetric group, involution, graph |

Subjects: | MSC 2000 > 20 Group theory and generalizations |

MIMS number: | 2012.7 |

Deposited By: | Dr John Ballantyne |

Deposited On: | 09 November 2012 |

Download Statistics: last 4 weeks

Repository Staff Only: edit this item