
Implementing QR Factorization Updating
Algorithms on GPUs

Andrew, Robert and Dingle, Nicholas J.

2012

MIMS EPrint: 2012.114

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/

Implementing QR Factorization Updating Algorithms
on GPUs

Robert Andrewa, Nicholas Dinglea,∗

aSchool of Mathematics, University of Manchester, Oxford Road, M13 9PL

Abstract

Linear least squares problems are commonly solved by QR factorization. When
multiple solutions have to be computed with only minor changes in the underly-
ing data, knowledge of the difference between the old data set and the new one
can be used to update an existing factorization at reduced computational cost.
This paper investigates the viability of implementing QR updating algorithms
on GPUs. We demonstrate that GPU-based updating for removing columns
achieves speed-ups of up to 13.5x compared with full GPU QR factorization.
Other updates achieve speed-ups under certain conditions, and we characterize
what these conditions are.

Keywords: QR factorization, QR updating, GPGPU computing

1. Introduction

There are many methods for solving overdetermined linear systems in the
least square sense, but the one with which this paper is concerned is QR fac-
torization. QR factorizations are computationally expensive, but when many
need to be calculated with small adjustments in the underlying data some of
this cost can be amortized by updating the factorizations.

There are four types of updates to the data matrix: adding a block of
columns, removing a block of columns, adding a block of rows, and removing a
block of rows. Adding and removing columns from the data matrix corresponds
respectively to adding and removing variables from the overdetermined system,
while adding and removing rows corresponds to adding and removing equations.

In this paper we aim to accelerate the updating algorithms originally pre-
sented in [1] by implementing them on a GPU using CUDA. The original
paper demonstrates that these algorithms outperform full QR factorization in
a serial environment, and our own prior work shows that their implementa-
tion on a GPU correspondingly outperforms a serial implementation by a wide

∗Corresponding author
Email addresses: robert.andrew@postgrad.manchester.ac.uk (Robert Andrew),

nicholas.dingle@manchester.ac.uk (Nicholas Dingle)

Preprint submitted to Elsevier November 30, 2012

margin [2]. Other papers have investigated implementing full QR factorization
on GPUs, for example by using blocked Householder transformations [3] or a
tile-based approach across multicore CPUs and multiple GPUs [4, 5]. Another
study [6] achieved speed-ups of 13x over the CULA library [7, 8] for tall-and-
skinny matrices by applying communication-avoiding QR. There is less work on
implementing updating algorithms in general, although [9] does investigate par-
allel out-of-core updating of QR factorizations for least squares problems when
adding extra rows. To the best of our knowledge there has been no prior work
that attempts to implement all four updating algorithms on GPUs.

QR factorization decomposes the n×m matrix A into the n× n orthogonal
matrix Q and the n×m upper-trapezoidal matrix R. Matrix updates entail the
addition or removal of contiguous blocks of p columns or p rows. When a block
of columns or rows is added during an update, this block is denoted U . The
location of an update within A is given as an offset, k, in columns or rows from
the top left corner. The updated matrix is denoted Ã, with the corresponding
updated factorization Q̃R̃.

Section 2 presents background material on the least squares problem, QR
factorization and updating procedures. Section 3 details the implementation
of Givens and Householder transforms on the GPU, then Section 4 describes
their use in the four updating algorithms introduced in Section 2. Section 5
presents the results of parallelizing the QR updating algorithms. We compare
run-times of the implemented algorithms to an existing full QR factorization
routine implemented by CULA. We also investigate the accuracy and stability
of the updating algorithms. Section 6 concludes and discusses future work.

2. Background

We describe the least squares problem and Householder and Givens methods
of QR factorization. We also introduce the four QR factorization updating
algorithms from [1].

2.1. QR Factorization and the Least Squares Problem

In a least squares problem we wish to find a vector x such that:

minx||Ax− b||2

where A is an n×m matrix of input coefficients with n ≥ m, and b is a vector
of observations. To do this we can use the QR factorization of A:

||Ax− b||2 = ||QTAx−QT b||22 = ||Rx− d||22 =

∣∣∣∣∣∣∣∣[R1

0

]
x−

[
f
g

]∣∣∣∣∣∣∣∣2
2

= ||R1x− f ||22 + ||g||22

where R1 is upper triangular and d = QT b. ||R1x− f ||22 = 0 can be solved by

back substitution, leaving ||g||22 as the minimum residual or error [10].

2

2.2. QR Factorizations

Givens and Householder transformations are two of the most widely used
methods for computing QR factorizations.

2.2.1. Householder Transformations

A Householder transformation is an orthogonal matrix:

P = I − 2

vT v
vvT

P can be chosen for a vector x so that Px = ||x||e1, where e1 is a vector of zeros
with a 1 as the first element and || · || is the vector 2-norm. This means that we
can use Householder vectors to transform A into R by progressively zeroing A’s
sub-diagonal elements starting from its first column. If Ai is A with the first
i− 1 columns so transformed, we can transform the ith column by computing a
Householder matrix Pi and embedding it in an n× n matrix:

Hi =

[
I(i−1) 0

0 Pi

]
The factorization then proceeds by forming Ai+1 = HiAi [11].

2.2.2. Givens Rotations

A Givens rotation is a matrix of the form

G =

[
c s
−s c

]
.

When this is applied to:

A =

[
a1
a2

]
with c =

a1√
a21 + a22

, s =
a2√
a21 + a22

it results in

GA =

[
c s
−s c

] [
a1
a2

]
=

[
ca1 + sa2

0

]
.

In contrast to Householder transformations, Givens rotations introduce just one
zero each. To apply a Givens transformation to the ith and (i+ 1)

th
elements

within a column of A, we embed a Givens matrix within an identity matrix,
overwriting the ith to (i+ 1)

th
elements in the ith to (i+ 1)

th
columns, and

multiply this matrix through A from the left:

IGA = AG, IG =

I(i−1)

c s
−s c

I(n−i−1)

where AG is the matrix A after a zero has been introduced.

3

0

0

0

0

0

0

0

0

0
*

0

0

0

0

0

0

0
*

0

*
*
*
*

−
−
−
−
−
−

*
*
*
*

−
−
−
−
−

*

0

0

0

0

*
*
*

+
+
+

0

0

*
*
*
*

*
+
+
+

pk−1 m−(k−1)

n

Q U
T

* *
*
*
−
−
−
−
−
−
−

*
*
*
*
+
+
+
0

0

0

Figure 1: A 10 × 5 matrix R in which the p = 3 columns inserted before column k = 3 are
shaded in blue. The symbol ‘-’ denotes a nonzero which must be made zero, whereas ‘+’
denotes a zero which must be made nonzero. ‘*’ denotes a general nonzero element.

2.3. QR Updating Algorithms

Here we summarize the QR updating algorithms originally presented in [1].

2.3.1. Adding Columns

When a block of p columns, denoted U , is added to A before column k, the
modified data matrix Ã is:

Ã =
[
A(1 : n, 1 : k − 1) U A(1 : n, k : m)

]
Multiplying through by QT gives:

QT Ã =
[
R(1 : n, 1 : k − 1) QTU R(1 : n, k : m)

]
We note that R̃(1 : n, 1 : k − 1) = R(1 : n, 1 : k − 1), as shown in Figure 1, so
we need only modify QTU and R(1 : n, k : m). To achieve this we require an
orthogonal matrix X ∈ R(n−k+1)×(n−k+1) such that:[

Ik−1 0
0 X

]
QT Ã = R̃

We use Givens rotations to compute this, as using Householder transformations
would result in R̃ being full. We can, however, use Householder transformations
to reduce the submatrix QTU(m + 1 : n, 1 : p) to upper-trapezoidal form,
before applying Givens rotations to finish the update. This use of Householder
transformations is possible because the trailing submatrix R(m + 1 : n, k : m)
is guaranteed to be entirely zero.

4

0

0

0

0

0

0

0

0

0
*

0 0 0

0 0 0

* *
*
*
−
−
−

*
*
*
*

−
−
−

*
*
*
*

−
−
−

*

0

0

0

0

0

0

0
*

0

0 0

0

n

k−1 m−(k−1)−p

Figure 2: The 10 × 8 matrix R with the p = 3 columns removed from column k = 3 onwards
represented by the blue line.

2.3.2. Removing Columns

When a block of p columns is deleted from A starting at column k, the
modified data matrix becomes:

Ã =
[
A(1 : n, 1 : k − 1) A(1 : n, k + p : m)

]
Multiplying through by QT :

QT Ã =
[
R(1 : n, 1 : k − 1) R(1 : n, k + p : m)

]
We can see that R̃(1 : n, 1 : k−1) = R(1 : n, 1 : k−1), as shown in Figure 2. This
allows us to define m− (k − 1)− p Householder transformations Hk,k+1,...,m−p
to reduce just the right-hand portion of R

Hm−p, ...,HkR(1 : n, k + p : m) = R̃(1 : n, k + p : m)

2.3.3. Adding Rows

When a block of p rows, U , are added to A, the updated data matrix is:

Ã =

 A(1 : (k − 1), 1 : m)
U

A((k) : n, 1 : m)

Wherever U is added within A, we can permute it to the bottom of the matrix:

PÃ =

[
A
U

]

5

* *
*
*

−
−

0

0

0

0

0

0

0
*

0

0

0

0

0
*

0

0

0

*
*
*

*
*
*
*

−
−

*
*
*
*

−
−

*
*000
*
*

−
− − −
− −

0

0

0

0 0 0

000

−
−−−

−
−
−
−
−

−
−
−

m

p

n

Figure 3: The 8 × 6 matrix R with the p = 4 rows added shaded in blue.

and thus [
QT 0
0 Ip

]
PÃ =

[
R
U

]
With m Householder transforms H1,2,3,...,m we can form R̃ as shown in Figure 3:

Hm...H2H1

[
R
U

]
= R̃

and because A = QR:

Ã =

(
PT

[
Q 0
0 Ip

]
H1...Hm

)
Hm...H1

[
R
U

]
= Q̃R̃

2.3.4. Removing Rows

When a block of p rows are removed from A from row k onwards, the updated
data matrix is:

Ã =

[
A(1 : (k − 1), 1 : m)
A((k + p) : n, 1 : m)

]
In order to show that Q̃ and R̃ can be calculated using just Q and R from the
original factorization, we must first permute the deleted rows to the top of A:

PA =

[
A(k : k + p− 1, 1 : m)

Ã

]
As shown in Figure 4, a series of Givens matrices, represented by the orthogonal
matrix G, are then employed to introduce zeros directly into PQ to create

6

*
*
*
*
*
*
*
*

* * * *

*

− −− − −−

− −
− −− − −− − −
− −− − −− − −

−− −

** * * * *
** * * * *
** * * * *

* * * *

− −− − −−
*
*
*

*
*
*

* *
* *

* *
* *
−− −
−− −
−− −
− −

* *

*
*
*

*
*
*

* *
* *

* *
* *
−− −
−− −
−− −
− −

* *
*
*

−

*
*
*

*

*
*
*

−

*
*
*

−

−

*
*

*
*
*

*
*
**

**

*
* *
*
*

*

*

*
* * − −− − −

*
*
*

* * ** * * * * *

n

k−1

p

Figure 4: The 12×12 matrix Q with the p = 4 rows removed shaded in blue. Transformations
used to introduce zeros into Q are also applied to R to produce R̃

PQG =

[
I 0

0 Q̃

]
. These transformations are applied to the non-permuted R:

PA =

[
A(k : k + p− 1, 1 : m)

Ã

]
= P (QG)(GR) =

[
I 0

0 Q̃

] [
S

R̃

]
Note that again Householder transformations may not be used here because
they would lead to R̃ being full.

3. Householder and Givens on the GPU

The updating algorithms rely on Givens and Householder transformations
and therefore the efficient parallelization of these operations on the GPU is vital.

3.1. Parallelizing Householder Transformations

We implement blocked Householder QR factorization, which uses BLAS level
3 operations, to better exploit the instruction bandwidth of GPUs [3]. In a
blocked QR factorization, multiple Householder transformations are combined
into a single transformation matrix:

P = P1P2...Rr

A block of r columns is reduced as if it were undergoing a full QR factorization,
and then the composite of the block’s Householder transforms is applied to the
remainder of the matrix. This can be represented as [3]:

P = I +WY T

7

where W and Y are matrices with the number of rows equal to the length
of the longest Householder vector in the block, and number of columns equal
to the number of Householder transforms that comprise the block. We apply
the Householder matrices to the trailing submatrix of the matrix undergoing
reduction using elementary BLAS subroutines implemented in CUBLAS [12].

3.2. Parallelizing Givens Rotations

There are two main considerations in using Givens rotations: within the rows
to the left of the subject elements there must be no other nonzero elements, and
there must be no nonzero elements in the column below the element to be
zeroed. Prior work exists on the efficient parallelization of Givens rotations on
distributed and multicore systems. One such approach is described in [13]:

• Each processor is assigned a strip of rows.

• The first zero is introduced in the leftmost column of the lowest strip.

• The owner of the second lowest strip is notified and it too introduces zeros
in its leftmost column. The owner of the lowest strip introduces zeros in
its second-to-leftmost column at the same time.

• The algorithm continues in this way until the matrix is upper trapezoidal.

We adapt this approach for use on GPUs, with the main difference being that
we use a strip height of 2 rows to maximize the number of cores on the GPU
which are doing work. This reflects the fact that GPUs prefer parallelism of a
much finer grain (less work per thread, more threads) compared with CPUs.

*
*

*
*

*

*** *
* * * *

*
*

* *

*** *
*** *
*** *
*** *
*** * *

*
*

*
*

*

*** *
* * * *

*
*

* *

*** *
*** *
*** *
*** *

**

*
**

* * *

*

0

Stage 2

*
*

*
*

*

* * *

*
*

* *
*

*
*

*
*

*** *
* * * *

*
*

*** *
*** *
*** * *

**
**

*

**

*
**

* * *

*

Stage 1

**

*
**

* * *

*

0

**

*
**

* * *

*

. . .

*
* * * * *

*** *0

0

0 0 0

000

000

00

0 0

0

0

Stage 8Stage 3

Figure 5: The application of Givens matrices on the GPU.

Figure 5 shows this modified approach in action. The stage numbers cor-
respond to the number of kernel invocations, while the coloured areas denote
different block assignments within a kernel; red denotes block id y = 0 within a

8

2-dimensional grid, blue denotes y = 1, yellow denotes y = 2, and finally green
denotes y = 3. In addition, the matrix is also partitioned in the x direction into
blocks of 128 elements. This requires the matrix to be accessed in row-major
order, but as other algorithms in this paper require column-major access we
implement an efficient transpose kernel based on that of [14].

Due to the fact that the matrix is partitioned along its width as well as its
height, dependencies are created between blocks regarding the calculation and
application of the Givens coefficients s and c. To ensure that application of the
coefficients does not start before they have actually been computed, our imple-
mentation comprises two kernels: makeGivens, which calculates the coefficients,
and applyGivens, which performs the actual rotations.

4. Implementation

We now describe how our Householder and Givens kernels are used to imple-
ment the four QR factorization updating algorithms summarized in Section 2.3.

4.1. Adding Columns

0

0

0

0

0

0

0

0

0
*

0

0

*
*
*
*

*
+
+
+

0

0

0

0

0

0

0

0

0
*

0

0

0

0

0

0

0
*

0

*
*
*
*

−
−
−
−
−
−

*
*
*
*

−
−
−
−
−

*

0

0

0

0

*
*
*

+
+
+

0

0

*
*
*
*

*
+
+
+

0

0

0

0

0

0

0

0

0
*

Q U
T

* *
*
*
−
−
−

*
*
*
*
+
+
+
0

0

0

pk−1 m−(k−1)

n

* *
*
*
−
−
−
−
−
−
−

*
*
*
*
+
+
+
0

0

0

Stage 1

* *
*
*

*
*
*
*

0

0

0

Stage 2

0

0

0

0

*
*
*

+
+
+

0

*
*
*
*

−
−
−

*
*
*
*

−
−
−

*

0

0

0

0

0

0

0
*

0

0 0

0 0 0

000

n−m

*
*
*
*

*
*
*
*

*

0

0

0

0

0

0

0
*

0

0

0

0

0

*
*
*

0

0

*
*
*
*

*
*
* *

* *
* *

*

0

*
0 0

00 0

000

0 0 0

000

0 0 0

m+p−(k−1)

Figure 6: The adding columns update of R. The shaded blue area shows the added columns,
while the shaded red area denotes the active section for each stage in the algorithm.

Figure 6 shows the stages in the reduction process for an example where
m = 5, n = 10, p = 3 and k = 3. Taking Q, R, an n×p block of columns U and
an index k, 0 ≤ k ≤ m+ 1 as input, the implementation proceeds as follows:

1. Apply Q to the added columns U to form QTU .

2. QR factorize the lower (n − m) × p block of QTU using Householder
transformations. This is the area shaded in red in Stage 1 of Figure 6.

3. If k = m+ 1 then the update is complete.

4. If not, transposes the section shown in red in Stage 2 of Figure 6.

9

5. Apply Givens rotations to the transposed section. This can be done at
the same time as Givens rotations are also applied Q and d, so separate
CUDA streams can be used simultaneously for each matrix/vector.

6. Transpose back the (now reduced) red section in Stage 2 of Figure 6.

4.2. Removing Columns

Figure 7 shows the stages in the reduction process for an example where
m = 8, n = 10, p = 3 and k = 3. Unlike adding columns, Q is not required for
the update but R, an index k, 0 ≤ k ≤ m − p + 1, and a block width nb are.
The implementation proceeds as follows:

1. If the right-most p columns were deleted, the update is complete.

2. Blocked Householder QR factorization is applied to the (p + nb) × nb
submatrix to the right of the removed columns (Stage 1). Note that here
the Householder vectors are only p+ 1 elements long and the matrices W
and Y matrices need only be of dimension (p+ nb)× nb. This is repeated
across submatrices to the right until R is upper triangular (Stage 2).

4.3. Adding Rows

We calculate this update using R, an index k, 0 ≤ k ≤ n + 1, and a p ×m
block of rows U . A visualization of the reduction of a single block within an
update where m = 6, n = 8, p = 4 is given in Figure 8. Note that the value of k
does not affect the algorithm as the added rows can be permuted to the bottom
of A. Adding rows also adds elements to b, and we denote these as e.

As can be seen in Stage 1 in Figure 8, a transformation is applied to a small
section of the nonzero triangular part of R separately to U to avoid arithmetic
involving zero. As blocked Householder transformations would apply the full
W and Y matrices to both R and U , an alternative approach is to use an
upper triangular square matrix T and a matrix V = [v1 v2 . . . vnb

] containing
Householder vectors as its columns [1]. Given a set of Householder matrices,
their product can be defined in terms of V and T as:

Hnb
...H2H1 = I − V TTV T

where nb is the block size and:

V =

 Inb

0
vn+1:n+p

T is defined recursively as:

T1 = τ1, Ti =

[
Ti−1 −τiTi−1V (1 : p, 1 : i− 1)T vi

0 τi

]
, i = 2 : nb

where τi is the Householder coefficient corresponding to the ith Householder
vector in the ith column of V . As the assignment of individual τi elements

10

0

0

0

0

0

0

0

0

0
*

0 0 0

0 0 0

* *
*
*
−
−
−

*
*
*
*

−
−
−

*
*
*
*

−
−
−

*

0

0

0

0

0

0

0
*

0

0 0

0

0 0 0

0 0 0

(p+1)+(n −1)b

0 0 0

0 0 0

n

k−1 m−(k−1)−p Stage 1 Stage 2

* *
*
*

*
*
*
*

*
*
*
*

−
−
−

*

0

0

0

0

0

0

0
*

0

0 0

0

0

0

0

0

0

0

0

0

0
*

0

0 0

0

0

0

* *
*
*

*
*
*
*

*
*
*
*

−
−
−

*

0

0

0

0

0

0

0
*

0

0 0

0

0

0

0

0

0

0

0

0

0
*

0

0

0

00

0

nb

Figure 7: The reduction of one block within the removing columns update of R for block size
nb = 2. The shaded blue line shows where the removed columns used to be, while the shaded
red area shows the active section for that stage in the algorithm.

* *
*
*

−
−

0

0

0

0

0

0

0
*

0

0

0

0

0
*

0

0

0

*
*
*

*
*
*
*

−
−

*
*
*
*

−
−

*
*000
*
*

−
− − −

− −

0

0

0

0 0 0

000

−
−−−

−
−
−

−
−

−
−
−

m

p

n

n
b

* *
*
*

−
−

0

0

0

0

0

0

0
*

0

0

0

0

0
*

0

0

0

*
*
*

*
*
*
*

−
−

*
*
*
*

−
−

*
*000
*
*

−
− − −

− −

0

0

0

0 0 0

000

−
−

−
−

0 0

00

0

0

0

0

Stage 1

* *
*
*

−
−

0

0

0

0

0

0

0
*

0

0

0

0

0
*

0

0

0

*
*
*

*
*
*
*

−
−

*
*
*
*

−
−

*
*000
*
*

−
− − −

− −

0

0

0

0 0 0

000

−
−

−
−

0 0

00

0

0

0

0

Stage 2

Figure 8: The reduction of one block within the adding rows update of R for block size nb = 2.
The shaded blue area shows the added rows, while the elements shaded in red in Stage 1 are
the elements involved in reduction of a block via Householder transformations. The elements
in the red area in Stage 2 are multiplied by the matrices produced in the previous stage.

11

along the diagonal of T is independent of the remainder of the formula for T ,
the entire diagonal can be assigned in parallel within a simple kernel before
repeated calls of CUBLAS gemv are used to form the rest of T .

V and T are applied to the trailing submatrix of

[
R
U

]
by:

[
I − V TTV T

] [R
U

]

=

In+p−kb
−

 Inb

0
V

TT
[
Inb

0 V T
] R(kb : kb + nb − 1, kb + nb : m)

R(kb + nb : n, kb + nb : m)
U(1 : p, kb + nb : m)

=

 (Inb
− TT)R(kb : kb + nb − 1, kb + nb : m)− TTV TU(1 : p, kb + nb : m)

R(kb + nb : n, kb + nb : m)
−V TTR(kb : kb + nb − 1, kb + nb : m) + (I − V TTV T)U(1 : p, kb + nb : m)

and applied to

[
d
e

]
by:

[
I − V TTV T

] [d
e

]
=

d(1 : kb − 1)

(Inb
− TT)d(kb : kb + nb − 1)− TTV T e

d(kb + nb : n)
−V TT d(kb : kb + nb − 1) + (I − V TTV T)e

where kb is the column index in the blocked update where the recently reduced
block began, and nb is the block size in columns [1].

We proceed as follows for each p× nb block of columns in the added rows:

1. Stage 1 in Figure 8: use Householder transformations to reduce the block’s
entries to zeros and to modify R’s corresponding nonzero entries.

2. Construct T as described above.

3. Stage 2 in Figure 8: update R and b by multiplying with T and V .

This updating algorithm is largely implemented using the CUBLAS routines
gemm, gemv, ger, axpy, and copy.

4.4. Removing Rows

We calculate this update using Q, R, an index k, 0 ≤ k ≤ n− p+ 1, and a
block height p. In contrast to the other updating algorithms, Givens rotations
are applied to Q as opposed to R. Figure 9 shows an example of the reduction
process where n = 12, m = 5, p = 4 and k = 5. A strip of rows Z is identified
within Q corresponding to the removed rows from A, Z := Q(k : k+p−1, 1 : n);
these are the rows shaded blue in Figure 9.

We first calculate Givens rotations for Z. For efficiency, the number of ker-
nels being spawned per stage can be greatly reduced by allocating a contiguous
block of memory to house the matrices Q and R along with the vector d. An
applyGivens kernel can then be applied once to the entire composite matrix as

12

*
*
*
*
*
*
*
*

* * * *

*

− −− − −−

− −
− −− − −− − −
− −− − −− − −

−− −

** * * * *
** * * * *
** * * * *

* * * *

− −− − −−
*
*
*

*
*
*

* *
* *

* *
* *
−− −
−− −
−− −
− −

* *

*
*
*

*
*
*

* *
* *

* *
* *
−− −
−− −
−− −
− −

* *

*
*
*
*

**
*
*

* **

** * * *

* *

* *

*

*
*
**

*
*
*
*
*
*
*
*
*
*
*

*
*

**
*

* ** * **
** * * * **

*
*

**
*

* ** * **
** * * * **

*
*

*
** * * * * **
** * * * **

*
*

**
*

* ** * **
** * * * **

*
*

**
*

* ** * **
** * * * **

*
*

*
** * * * * **
** * * * **

* *
*
*
*
*
*
*

*
*
*
*

*
0

0

0

0
*

0

00

0

0

0

0

0
*

0

0

0

0 0 0

0

0

0 0

0 0 00

0

0

0 0 0

0

0

0 0 0

0 0 00

0

0

0

00

00

0

0

*
*
*

*
*

*
*
*

*

*
*
*

*
*

*
*
*

*

*
*
*

*
*

*
*
*

*

*
*
*

*
*

*
*
*

*

*
*
*

*
*

*
*
*

*

0 00 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 00 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 00 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0
k−1

*
*
*

*
*

−

*
*
*

*

*
*
*

−

*
*
*

−

−

*
*

*
*
*

*
*
**

**

*
* *
*
*

*

*

*
* * − −− − −

*
*
*

* * ** * * * * *

n

p

1

0

0

0

0

0 0

0 0

0

1

1

1

* *
* *

* *
* *

* *
* *

* *
* ** * * *

* * * *
* * * *
* * * *

*

0 0 00

0 0

0

n

m

*
*
*
*
*

0

*

0

0

0

0

0 0

0

0

0 0

0 00

0

0

0 0 0

0

0

0 0 0

0 0 00

0

*
* * **

* * **
* * **
* * **

* * **

0 0 0 0 0

0 0 0

0 0 0

0 0 0 0 0

Q

R

* *
*
*
*
*
*
*

*
*
*
*

*
0

0

0

0
*

0

00

0

0

0

0

0
*

0

0 0 00

0

0

0

00

00

0

R
~

Q
~

Figure 9: Removing rows in Q and R. The shaded blue area shows the rows in Q corresponding
to the rows removed in A. The elements shaded in red are the elements that form Q̃ and R̃.

opposed to applying one kernel per constituent matrix. This also presents the
opportunity to align memory for all accesses by allocating the composite matrix
via cudaMallocPitch. The larger matrix also means that the thread blocks for
the applyGivens kernel are increased in size from 128 elements to 256, which
reduces the scheduling overhead and allows us to exploit shared memory for the
storage of Givens coefficients.

The implementation proceeds as follows:

1. Allocate memory on the GPU for the composite matrix C, and copy Q
and d from host memory into C.

2. Assign the variable Z to the strip to be zeroed by Givens transformations.

3. Transpose R to its place in C using the efficient GPU transpose procedure.

4. Apply the Givens transform algorithm described in Figure 5 to reduce Q
to the form shown in the centre of the top of Figure 9, with zeros in the
first p columns and in Z, and with the identity matrix embedded in the
first p columns of Z.

5. Copy the reduced elements of Q and R from C into the smaller Q̃ and R̃.

13

5. Results

We evaluate the performance of our updating algorithms on an Nvidia Tesla
M2050 (Fermi) GPU attached to a 12-core Intel Xeon E5649 2.53GHz host.
All experiments are conducted in IEEE single precision arithmetic. We start
measuring the run-time of our implementations, tupdate , from when they initiate
transfer of Q (for those updating algorithm that require it), R and d from host
memory to the GPU. We then execute our updating algorithm and use the
resulting R̃ and d̃ to solve the least squares problem via the CUBLAS back-
substitution routine cublasStrsm. Timing stops when this CUBLAS routine
returns. Q and R have been computed by a previous full QR factorization and
we do not measure the time to do this.

We compare our implementation against the run-time, tfull , of QR-based
least squares solve from the CULA library (version R14). We time the execution
of the culaDeviceSgels routine, including the time taken to transfer Ã and b̃
from host to GPU. Speed-up is then calculated as

tfull
tupdate

.

The coefficients of our overdetermined systems of equations are uniformly-
distributed random numbers in the interval (−1, 1). All run-times are measured
in seconds and all values presented are averages over 5 executions.

5.1. Choosing the Block Size Parameter

Table 1: Run-times in seconds for applying 1000 Householder transformations with different
block sizes nb.

Adding Rows Adding Columns Removing Columns
nb n = 4000,m = 1000 n = 4000,m = 1000 n = 4000,m = 1200

k = 250, p = 200 k = 250, p = 1000 k = 0, p = 200
10 0.194 0.389 0.201
50 0.175 0.285 0.183

100 0.175 0.280 0.182
200 0.185 0.288 0.190
500 0.214 0.336 0.235

Each updating algorithm that involves blocked Householder transformations
(i.e. adding and removing columns and adding rows) depends on a block size
nb. The optimum value for nb is likely to be problem-dependent, and it was not
possible for us to determine this optimum for each of the test cases considered.
Instead, we choose nb for each algorithm based on the performance of a test
case. Table 1 shows the times taken for each of the three algorithms to apply
1000 Householder vectors to 1000 columns, and we observe that the optimum
block size lies between 50 and 100 columns per block. In all further tests we
therefore pick a block size that results in ten blocks per factorization.

5.2. Adding Columns

Updating by adding a block of columns requires Q to calculate R̃, which
means we must output Q̃ as well as R̃ to enable subsequent updates. The

14

complexity of updating a QR factorization by adding a block of p columns is:

O(nmp+ (n−m)p2 + (n−m)np+ (m+ p− k)2p+ (m+ p− k)pn)

The first term comes from the matrix multiplication QTU , while the second
and third terms come from the QR factorization of the lower part of U and the
subsequent application of the transforms to Q. The final two terms come from
the application of Givens matrices to R and Q. The complexity of a QR full
factorization with the addition of p columns is O(n(m+ p)2).

Table 2: Run-times in seconds for adding p = 200 columns and for CULA full QR factorization,
for m = 3000. CULA run-time is constant because k does not change the problem size.

k
n = 4000 n = 8000 n = 12000

CULA Updating CULA Updating CULA Updating
0

0.380

2.357

1.000

3.867

1.594

5.670
500 1.887 3.219 4.825

1000 1.464 2.636 4.048
1500 1.075 2.046 3.360
2000 0.725 1.499 2.667
2500 0.404 1.021 1.941
3000 0.155 0.613 1.445

Table 3: Run-times in seconds for adding p = 200 columns and for CULA full QR factorization,
for m = 6000. CULA run-time is constant because k does not change the problem size.

k
n = 8000 n = 12000 n = 16000

CULA Updating CULA Updating CULA Updating
0

1.797

8.585

3.003

11.385

4.241

14.458
500 7.670 10.280 13.184

1000 6.730 9.162 11.930
1500 5.951 8.152 10.642
2000 5.112 7.249 9.639
2500 4.393 6.307 8.551
3000 3.720 5.423 7.512
3500 3.068 4.562 6.534
4000 2.458 3.865 5.425
4500 1.876 3.055 4.660
5000 1.388 2.414 3.717
5500 0.911 1.675 2.953
6000 0.503 1.177 2.187

As k gets smaller the complexity of updating approaches that of comput-
ing a whole new factorization. We investigate this for a range of problem sizes
(n and m values). The run-times are given in Tables 2 and 3 and the corre-
sponding speed-ups of updating relative to CULA full factorization are shown
in Figures 10 and 11. We observe the expected inverse relationship between k

15

and run-time of the update algorithm, with only the highest values of k show-
ing speed-up over CULA. For the updating algorithm the lower values of n
exhibit larger speed-ups over the full factorization, which is possibly due to the
involvement of Q in updating.

 0

 0.5

 1

 1.5

 2

 2.5

 0 500 1000 1500 2000 2500 3000

s
p

e
e

d
-u

p

update location k

n=4000, m=3000, p=200
n=8000, m=3000, p=200

n=12000, m=3000, p=200

Figure 10: Speed-up of adding columns update relative to full QR factorization for m = 3000.

Table 4: Run-times of the individual stages of adding p = 200 columns update for n = 16000,
m = 6000.

Algorithm Stage k = 500 k = 5500
Memory Transfer (HOST→GPU) 0.4913 0.5102
QTU 0.1922 0.1922
Householder Transformations 1.3950 1.3936
Transpose Procedures 0.0291 0.0006
Givens Rotations 11.0144 0.7949

Figure 11 shows the results with larger m than in Figure 10. The complexity
of a full QR factorization increases with m whereas the complexity of updating
increases with the difference between m and k. This is because the size of the
sub-matrix to which Givens rotations must be applied (the red area in Stage
2 of Figure 6) increases with m − k, which means that the GPU updating
algorithm performs better relative to CULA when adding columns to the end
of matrix that has a large number of columns. As shown in Table 4, when k is
much smaller than m (corresponding to adding columns near the beginning of
the matrix), the run-time of the updating algorithm is dominated by the time
required to execute the O(m− k) Givens rotations kernels.

The complexity of updating also increases quadratically with p in the second
term due to the Householder transformations in Stage 1 of the algorithm. As

16

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 1000 2000 3000 4000 5000 6000

s
p

e
e

d
-u

p

update location k

n=8000, m=6000, p=200
n=12000, m=6000, p=200
n=16000, m=6000, p=200

Figure 11: Speed-up of adding columns update relative to full QR factorization for m = 6000.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

s
p

e
e

d
-u

p

number of columns added p

n=5000, m=3000, k=2980
n=8000, m=3000, k=2980

Figure 12: Speed-up of adding columns update relative to full QR factorization for k =
2980,m = 3000 for numbers of additional columns p.

17

Table 5: Run-times in seconds for adding p columns and for CULA full QR factorization, for
k = 2980, m = 3000.

p
n = 5000 n = 8000

CULA Updating CULA Updating
100 0.500 0.180 0.870 0.386
300 0.528 0.323 0.919 0.732
500 0.555 0.428 0.973 0.967
700 0.564 0.526 1.028 1.198
900 0.603 0.643 1.085 1.392

1100 0.620 0.731 1.149 1.606
1300 0.648 0.848 1.221 1.885
1500 0.683 0.954 1.230 2.027

shown in Figure 12 and Table 5, the updating algorithm only runs faster than
full factorization for smaller values of p. This is expected because the House-
holder transformations that reduce the lower part of U (shaded red in Stage 1
of Figure 6) also have to be applied to Q. As p approaches m, therefore, the
complexity of the updating algorithm approaches that of full QR factorization.

5.3. Removing Columns

Unlike the update by adding columns, removing columns can be implemented
without the involvement of Q. We therefore expect that these updates will
perform better than those that do involve Q. The complexity of updating a QR
factorization by removing a block of p columns is O((m− k − p)2p), compared
with the complexity ofO(n(m−p)2) for a full QR factorization of an n×mmatrix
with p columns removed. Note that the complexity of an update via removing
columns is not dependent on the matrix height n, whereas the complexity of
a full QR factorization is. We therefore expect that, for a sufficiently large
n, our updating algorithm will outperform a full GPU QR factorization. Our
experiments confirm this: as shown in Table 6, the run-time of the CULA
solve increases with n, while that of our updating algorithm remains essentially
constant. The corresponding speed-up is plotted in Figure 13.

Table 6: Run-times in seconds for removing p = 500 columns and for CULA full QR factor-
ization, for m = 3000, k = 0.

n CULA Updating
6000 0.562 0.591
7000 0.672 0.600
8000 0.753 0.592
9000 0.871 0.596

10000 0.959 0.597
11000 1.101 0.616
12000 1.193 0.620

18

 1

 1.25

 1.5

 1.75

 2

 6000 7000 8000 9000 10000 11000 12000

s
p
e
e
d
-u

p

number of matrix rows n

m=3000, k=0, p=500

Figure 13: Speed-up of removing columns update relative to full QR factorization.

 0

 2

 4

 6

 8

 10

 12

 14

 0 500 1000 1500 2000 2500 3000

s
p

e
e

d
-u

p

update location k

n=6000, m=3000, p=100
n=6000, m=3000, p=200
n=6000, m=3000, p=500

Figure 14: Speed-up of removing columns update relative to full QR factorization in CULA
with varying k and p.

Table 7: Run-times in seconds for removing p columns and for CULA full QR factorization,
for m = 3000, n = 6000.

k
p = 100 p = 200 p = 500

CULA Updating CULA Updating CULA Updating
0

0.662

0.601

0.631

0.605

0.565

0.609
500 0.526 0.482 0.479

1000 0.417 0.387 0.353
1500 0.312 0.287 0.239
2000 0.212 0.189 0.136
2500 0.111 0.101 0.042
2800 – 0.047 –
2900 0.050 – –

19

Figure 7 shows that m − (k − 1) − p Householder transforms are required
per update. Removing more columns (which corresponds to larger values of
p) therefore decreases the number of the Householder transforms required to
carry out an update, but also decreases the amount of work required for a
full QR factorization. As reducing the number of Householder transformations
in our implementation reduces the number of kernel invocations on the GPU,
our implementation performs better as p increases. This can be seen from the
run-times in Table 7, and the corresponding speed-ups over CULA (shown in
Figure 14) reach over 13x for large p and k.

5.4. Adding Rows

Unlike the other updating algorithms, the block of rows U added to A can
be permuted to the bottom of the matrix without altering the algorithm. We
therefore set k = 0 for all tests in this section. As with removing columns,
updating by adding rows does not require Q.

 1

 1.25

 1.5

 1.75

 2

 8000 9000 10000 11000 12000 13000 14000

s
p
e
e
d
-u

p

number of matrix rows n

m=3000, k=0, p=500

Figure 15: Speed-up of adding rows update relative to full QR factorization with varying n.

Table 8: Run-times in seconds for adding p = 500 rows and for CULA full QR factorization,
for m = 3000, k = 0.

n CULA Updating
8000 1.174 1.006
9000 1.300 0.991

10000 1.440 1.021
11000 1.583 1.015
12000 1.717 1.019
13000 1.845 0.999
14000 2.002 1.040

The complexity of updating a QR factorization by adding a block of p rows
is O(m2p + m2), compared with the O((n + p)m2) complexity of a full QR
factorization of a matrix with p rows added. Once again, the complexity of the
updating algorithm does not depend on the matrix height n. This is because,

20

as shown in Figure 8, each Householder transformation is only applied to the
p×m matrix U and a single row of R. As shown in Figure 15 and Table 8, the
run-time of the updating algorithm therefore remains essentially constant with
increasing n while the run-time of the full QR factorization increases linearly.

Table 9: Run-times in seconds for adding p rows and for CULA full QR factorization, for
n = 8000, k = 0.

m
p = 200 p = 1500

CULA Updating CULA Updating
1000 0.321 0.192 0.373 0.253
2000 0.611 0.398 0.730 0.589
3000 0.981 0.627 1.137 0.986
4000 1.383 0.908 1.654 1.482
5000 1.802 1.200 2.219 2.075
6000 2.265 1.551 2.807 2.754
7000 2.746 1.931 3.414 3.485

 1

 1.2

 1.4

 1.6

 1.8

 1000 2000 3000 4000 5000 6000 7000

s
p
e
e
d
-u

p

number of matrix columns m

n=8000, k=0, p=200
n=8000, k=0, p=1500

Figure 16: Speed-up of adding rows update relative to full QR factorization for varying m
and p.

We investigate the effect of varying m and p. The run-times are reported
in Table 9 and the speed-up of the updating method versus full factorization is
shown in Figure 16. We note that the speed-up decreases as m and p increase.
We might expect that the updating algorithm would never run slower than full
QR factorization because we are essentially performing a full QR reduction and
skipping over those entries of R that are already zero. However, to do this we
require twice as many CUBLAS calls as an efficient full QR factorization. This
is worthwhile for low values of p, but for large values the overhead dominates.
Given the processing power of GPUs, it might be beneficial to do the unnecessary
work and avoid the expense of additional function calls.

We also note that the efficiency of updating for adding rows decreases with
increasing m because each of the m Householder reflections is performed using
multiple CUBLAS calls. Implementing a Householder transformation as a single
dedicated kernel is the subject of future work.

21

5.5. Removing Rows

Updating by removing rows requires Q, as was also the case for adding rows.
Alone out of all the updating algorithms described here, however, it is entirely
implemented using Givens rotations. These two facts combine to make it the
most computationally demanding of all four updates. Its theoretical complexity
is O(pn(n + m + 1)), compared with the O((n − p)m2) complexity of a full
QR factorization of a matrix with p rows removed. The complexity of the
update is not dependent on the update location parameter k because all Givens
transformations must be applied to the entire length n of Q and the entire width
m of R, regardless of the value of k.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 20 30 40 50 60 70 80 90 100

s
p

e
e

d
-u

p

update size p

n=12000, m=6000, k=0
n=12000, m=8000, k=0

n=12000, m=10000, k=0

Figure 17: Speed-up of removing rows update relative to full QR factorization for varying m
and p.

Table 10: Run-times in seconds for removing p rows and for CULA full QR factorization, for
n = 12000, k = 0.

p
m = 6000 m = 8000 m = 10000

CULA Updating CULA Updating CULA Updating
20 2.999 3.068 4.240 3.325 5.680 3.592
40 2.895 4.646 4.185 5.189 5.563 5.631
60 2.963 6.417 4.202 6.989 5.631 7.674
80 2.921 8.111 4.088 8.851 5.435 9.679

100 2.954 9.752 4.144 10.706 5.575 11.742

Figures 17 and 18 illustrate the speed-up of removing rows updating over full
QR factorization with varying m, n and p values, and accompanying run-times
are shown in Tables 10 and 11. The general trend with increasing m, n and p is
that updating becomes progressively more slow than full QR factorization. This

22

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 30 40 50 60 70 80 90 100

s
p

e
e

d
-u

p

update size p

n=8000, m=6000, k=0
n=12000, m=6000, k=0
n=16000, m=6000, k=0

Figure 18: Speed-up of removing rows update relative to full QR factorization for varying n
and p.

Table 11: Run-times in seconds for removing p rows and for CULA full QR factorization, for
m = 6000, k = 0.

p
n = 8000 n = 12000 n = 16000

CULA Updating CULA Updating CULA Updating
20 1.745 1.736 2.999 3.068 4.197 4.587
40 1.775 2.635 2.895 4.646 4.176 7.266
60 1.773 3.501 2.963 6.417 4.205 10.064
80 1.757 4.371 2.921 8.111 4.116 12.773

100 1.713 5.181 2.954 9.752 4.116 15.335

23

is probably attributable to the O(n+p) kernel invocations required to implement
the Givens rotations. We do observe speed-ups for updating compared with full
factorization when p is small and m approaches n (see Figure 17). This is
because the complexity of full QR factorization increases quadratically with m
while for updating it only increases linearly.

5.6. Accuracy and Stability

Table 12: Table of normwise relative forward errors for n = 4000, m = 2000, k = 0.

p
Adding Rows Removing Columns

GPU Serial GPU Serial
100 2× 10−6 3× 10−6 3× 10−6 3× 10−6

300 2× 10−6 2× 10−6 3× 10−6 3× 10−6

500 2× 10−6 3× 10−6 2× 10−6 2× 10−6

700 1× 10−6 3× 10−6 2× 10−6 2× 10−6

900 3× 10−6 3× 10−6 2× 10−6 2× 10−6

Table 13: Table of normwise relative forward errors for n = 4000, m = 2000, k = 0.

p
Removing Rows Adding Columns
GPU Serial GPU Serial

100 5× 10−6 4× 10−6 3× 10−6 3× 10−6

300 4× 10−6 4× 10−6 5× 10−6 5× 10−6

500 5× 10−6 4× 10−6 6× 10−6 6× 10−6

700 6× 10−6 5× 10−6 6× 10−6 6× 10−6

900 6× 10−6 5× 10−6 7× 10−6 8× 10−6

We compare the normwise relative error ||x−x̂||2||x||2 of the least squares solution

calculated from the output of an updated factorization, x̂, versus that of a
solution from a full factorization calculated by CULA, x. We perform this
comparison for updated factorizations calculated by our GPU implementation,
and also for a serial implementation of the updating algorithms. Tables 12
and 13 show that the errors relative to the CULA solution are comparable
between the GPU and CPU updated factorizations.

Table 14: Table of Q̃ orthogonality values for n = 4000, m = 2000, k = 0.

p
Removing Rows Adding Columns

GPU Serial GPU Serial
100 2.34× 10−4 1.62× 10−4 2.42× 10−4 1.68× 10−4

300 3.39× 10−4 1.76× 10−4 3.67× 10−4 4.67× 10−4

500 3.64× 10−4 1.85× 10−4 5.00× 10−4 6.00× 10−4

700 3.89× 10−4 1.90× 10−4 4.79× 10−4 2.29× 10−4

900 4.70× 10−4 1.93× 10−4 5.64× 10−4 2.46× 10−4

24

Table 15: Table of normwise relative backward error values for n = 4000, m = 2000, k = 0.

p
Removing Rows Adding Columns

GPU Serial GPU Serial
100 1.39× 10−4 7.40× 10−5 9.50× 10−5 5.00× 10−5

300 3.74× 10−4 1.87× 10−4 1.56× 10−4 6.10× 10−5

500 5.81× 10−4 3.04× 10−4 2.02× 10−4 6.90× 10−5

700 7.33× 10−4 4.12× 10−4 2.34× 10−4 7.70× 10−5

900 9.02× 10−4 5.00× 10−4 2.51× 10−4 8.30× 10−5

For the two updating algorithms that form Q̃, namely removing rows and
adding columns, we compute ||Q̃T Q̃ − I||2 to assess the orthogonality of Q̃.
Table 14 shows that, once again, the errors from the GPU computations are
of the same order as those from the serial implementation. We also compute

the normwise relative backward error ||Q̃R̃−Ã||2
||A||2 for these two algorithms, and

the results are given in Table 15. The errors are again comparable between the
serial and GPU implementations. Note that there the error increases with p,
which is probably because the number of transformations increases with p.

6. Conclusion

The aim of this paper was to implement the updating algorithms presented
in [1] on the GPU using CUDA in order to achieve speed-ups over recomputing
full QR factorizations on the GPU. Evaluation of our implementation shows that
the GPU updating algorithms outperform full GPU QR factorization for certain
values of the input parameters m, n, p and k. In a situation where repeated
QR factorizations needed to be computed we could therefore decide whether to
update or to recompute from scratch by considering the size of the problem, the
type of update and the number of rows/columns to be added/removed.

We observed that the best performance was achieved when removing large
numbers of columns for large values of k (corresponding to removing columns
from the right-hand portion of A), with speed-ups of up to 13.5x over full fac-
torization (see Figure 14). Other good performers were adding smaller numbers
of columns for large values of k, with speed-ups of up to 3.5x (Figure 11), and
adding rows to a tall-and-skinny A, which gave speed-ups approaching 2x (Fig-
ure 15). We found that removing rows, which required the application of Givens
rotations to both Q and R, performed worse than CULA for all cases except
removing a small number of rows from an almost-square A.

Many of the performance issues we encountered were linked to high fre-
quencies of kernel invocations. A possible method for reducing the number of
kernels used to apply Givens rotations would be to increase the number of rows
in a strip. It might then be possible to apply multiple dependent rotations per
thread block by looping and synchronization statements within the kernel code.
Alternatively, Nvidia have recently introduced “dynamic parallelism” to their
Kepler architecture [15]. This permits the dynamic spawning of kernels on the

25

GPU without involving the CPU, and so could overcome our problem with large
kernel invocation overheads.

Another approach would be to use Householder transformations in place of
Givens rotations where possible. For example, in the adding columns update
Householder transformations could be used even though they generate fill-in
because the resulting extra floating point operations are likely to be cheaper on
the GPU than invoking multiple kernels.

Acknowledgements

The authors would like to thank IT Services for Research (formerly Research
Computing Services) at the University of Manchester for providing access to the
GPU nodes on the Computational Shared Facility (CSF). The second author
is supported by EPSRC grant EP/I006702/1 “Novel Asynchronous Algorithms
and Software for Large Sparse Systems”.

References

[1] S. Hammarling, C. Lucas, Updating the QR factorization and the least
squares problem, MIMS EPrint 2008.111, University of Manchester,
Manchester, UK, 2008.

[2] R. Andrew, Implementation of QR updating algorithms on the GPU, Mas-
ter’s thesis, University of Manchester, Manchester, UK, 2012. Available as
MIMS EPrint 2012.80.

[3] A. Kerr, D. Campbell, M. Richards, QR decomposition on GPUs, in:
Proc. 2nd Workshop on General Purpose Processing on Graphics Process-
ing Units (GPGPU-2), Washington, D.C., USA, pp. 71–78. 2009.

[4] E. Agullo, C. Augonnet, J. Dongarra, M. Faverge, H. Ltaief, S. Thibault,
S. Tomov, QR factorization on a multicore node enhanced with multiple
GPU accelerators, in: Proc. 2011 IEEE International Parallel Distributed
Processing Symposium (IPDPS’11), Anchorage, AK, USA, pp. 932–943.
2011.

[5] J. Kurzak, R. Nath, P. Du, J. Dongarra, An implementation of the tile
QR factorization for a GPU and multiple CPUs, in: K. Jónasson (Ed.),
Applied Parallel and Scientific Computing, volume 7134 of Lecture Notes
in Computer Science, Springer, Berlin, Heidelberg, 2012, pp. 248–257.

[6] M. Anderson, G. Ballard, J. Demmel, K. Keutzer, Communication-avoiding
QR decomposition for GPUs, Technical Report UCB/EECS-2010-131, Uni-
versity of California at Berkley, 2010.

[7] CULA: GPU accelerated linear algebra, EM Photonics, 2012. http://www.
culatools.com/.

26

[8] J. Humphrey, D. Price, K. Spagnoli, A. Paolini, E. Kelmelis, CULA: Hybrid
GPU accelerated linear algebra routines, in: Proc. SPIE Defense, Security
and Sensing (DSS’10), Orlando, FL, USA. 2010.

[9] B. Gunter, R. Van De Geijn, Parallel out-of-core computation and updating
of the QR factorization, ACM Trans. Math. Softw. 31 (2005) 60–78.

[10] G. Golub, C. V. Loan, Matrix Computations, Johns Hopkins University
Press, 3rd edition, 1996.

[11] N. J. Higham, Accuracy and Stability of Numerical Algorithms, Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA, 2nd edition,
2002.

[12] CUDA Toolkit 4.2 CUBLAS Library, Nvidia, 2012. http:

//developer.download.nvidia.com/compute/DevZone/docs/html/

CUDALibraries/doc/CUBLAS_Library.pdf.

[13] O. Egecioglu, A. Srinivasan, Givens and Householder reductions for linear
least squares on a cluster of workstations, in: Proc. International Confer-
ence on High Performance Computing (HiPC’95), New Delhi, India, pp.
734–739.

[14] G. Ruetsch, P. Micikevicius, Optimizing matrix transpose in CUDA,
Technical Report, Nvidia, 2009. http://www.cs.colostate.edu/~cs675/
MatrixTranspose.pdf.

[15] Dynamic parallelism in CUDA, Nvidia, 2012. http://developer.

download.nvidia.com/assets/cuda/docs/TechBrief_Dynamic_

Parallelism_in_CUDA_v2.pdf.

27

