You are here: MIMS > EPrints
MIMS EPrints

2012.26: Blocked Schur Algorithms for Computing the Matrix Square Root

2012.26: Edvin Deadman, Nicholas J. Higham and Rui Ralha (2012) Blocked Schur Algorithms for Computing the Matrix Square Root.

There is a more recent version of this eprint available. Click here to view it.

Full text available as:

PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
276 Kb

Abstract

The Schur method for computing a matrix square root reduces the matrix to the Schur triangular form and then computes a square root of the triangular matrix. We show that by using either standard blocking or recursive blocking the computation of the square root of the triangular matrix can be made rich in matrix multiplication. Numerical experiments making appropriate use of level 3 BLAS show significant speedups over the point algorithm, both in the square root phase and in the algorithm as a whole. In parallel implementations, recursive blocking is found to provide better performance than standard blocking when the parallelism comes only from threaded BLAS, but the reverse is true when parallelism is explicitly expressed using OpenMP. The excellent numerical stability of the point algorithm is shown to be preserved by blocking. These results are extended to the real Schur method. Blocking is also shown to be effective for multiplying triangular matrices.

Item Type:MIMS Preprint
Additional Information:

To appear in Springer Lecture Notes in Computer Science

Uncontrolled Keywords:matrix function square root Schur recursive
Subjects:MSC 2000 > 15 Linear and multilinear algebra; matrix theory
MSC 2000 > 65 Numerical analysis
MIMS number:2012.26
Deposited By:Dr Edvin Deadman
Deposited On:05 December 2012

Available Versions of this Item

Download Statistics: last 4 weeks
Repository Staff Only: edit this item