You are here: MIMS > EPrints
MIMS EPrints

2013.50: Point vortices on the hyperboloid

2013.50: Citlalitl Nava Gaxiola (2013) Point vortices on the hyperboloid. PhD thesis, Manchester Institute for Mathematical Sciences, The University of Manchester.

Full text available as:

PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
1798 Kb

Abstract

In Hamiltonian systems with symmetry, many previous studies have centred their attention on compact symmetry groups, but relatively little is known about the effects of noncompact groups. This thesis investigates the properties of the system N point vortices on the hyperbolic plane H2, which has noncompact symmetry SL(2;R). The Poisson Hamiltonian structure of this dynamical system is presented and relative equilibria conditions are found. We also describe the trajectories of equilibria with momentum value not equal to zero. Finally, stability criteria are found for a number of cases, focusing on N = 2 and 3. These results are placed in with the study of point vortices on the sphere, which has compact symmetry.

Item Type:Thesis (PhD)
Uncontrolled Keywords:Non-compact symmetry, point vortices, stability, relative equilibria
Subjects:MSC 2000 > 37 Dynamical systems and ergodic theory
MSC 2000 > 70 Mechanics of particles and systems
MIMS number:2013.50
Deposited By:Dr James Montaldi
Deposited On:09 October 2013

Download Statistics: last 4 weeks
Repository Staff Only: edit this item