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Abstract

Here we show that the alternating group of degree n is a completion of
the Goldschmidt Gs-amalgam if and only if n ¢ {1,2,3,4,5,7,8,9,11,12, 16,17, 19, 23}

1 Introduction

In [3] Goldschmidt classified the primitive rank 2 amalgams of index (3,3).
These amalgams are now referred to as Goldschmidt amalgams. We recall
that a rank 2 amalgam consists of groups P;, P, and B together with group
monomorphisms ¢1, ¢ such that

¢1:B—>P1and¢2:B—>P2.

Suppressing the ¢;, we refer to this amalgam as A(Py, P2, B). To say A(Py, P, B)
is primitive means that if X < B and ¢;(K) < P; for i = 1,2, then K = 1. If
P, and P, are finite groups, then A(P;, P2, B) is a finite amalgam whose in-
dex is ([P1 : ¢1(B)], [Pz : ¢2(B)]).- A group G is said to be a completion of
A(Py, P,, B) if there exist group homomorphisms ¢; : P, — G i = 1,2, for
which ¢1¢1 = Pa¢s : B —> G and G = {imy, imabs). Should the ;.7 = 1,2,
be monomorphisms we then say this is a faithful completion. Here we shall only
consider faithful completions, and so from now on will identify P; with ;(P;)
and B with 1;¢;(B). Hence we have P; < G,i = 1,2 with P, n P, > B and
{Py, Py = G (though in all the completions we deal with we have P; n P, = B).
The amalgams arrayed in [3] consist of fifteen amalgams, among which is the
Goldschmidt Gs-amalgam. This amalgam has Py =~ Sym(4) =~ P, and B =~
Dih(8). By Sym(n) we mean the symmetric group of degree n and Dih(8)
the dihedral group of order 8. We also use Alt(n) to denote the alternating
group of degree n. It is completions of the G3-amalgam we study here. Putting
£=1{1,2,3,4,5,7,8,9,11,12,16,17,19, 23} we state our main result.

Theorem 1.1. For n € N, Alt(n) is a completion of the Goldschmidt Gs-
amalgam if and only if n ¢ €.



Earlier work on the Goldschmidt G3-amalgam for alternating groups [7] veri-
fied that for n < 24, Alt(n) is a completion precisely when n € {6,10,13,14,15, 18,
20, 21,22, 24}. In this paper we shall demonstrate that Alt(n) is a completion for
all n > 25 from which Theorem 1.1 will then follow. Conder, in [2], investigated
whether G = Sym(n) is the automorphism group of some finite connected 5-arc
transitive graph. Using the work of Lorimer [4], Conder rephrases his problem
to ask whether there exists H =~ Sym(4) x Zs < G and a € G such that

(i) a* € H;
(ii) G = (HaH) and,;
(i) [H: H nH*] =3.

If such a subgroup H and element a can be found, then Sym(n) is a completion
of the Goldschmidt Gi-amalgam (with P, = H,P, = H* and B = H n H%)
which then implies that Alt(n) is a completion of the Goldschmidt G3-amalgam
(see Lemma 2.2). Now Conder’s method is to assemble various transitive repre-
sentations for Sym(4) x Zs on 2,3,6,12,24 and 48 points and then take appro-
priate combinations of these upon which a permutation that will fulfil the role
of a is defined. This is achieved by all n of the form n = 84b+ 176¢ + 177d + 87,
where b, ¢, d € N. Since the Frobenius number of {84,176, 177}- the largest inte-
ger such that it can’t be formed as 84b + 176¢ + 177d for b, ¢, d > 0 - is 2743, it
means that, taking into account the additional 87, for all n > 2831, Sym(n) and
Alt(n) are respective completions of the Goldschmidt G- and G3- amalgams.
We briefly survey what else is known about completions of the Goldschmidt
Gsz-amalgam. Which sporadic simple groups (with the sole exception of the
Monster) are completions is settled in [6] and [7]. While in [5] for the classical
groups in 3 dimensions we have that SLs3(q) and PSLs(q) are completions of
the Goldschmidt Gsz-amalgam if and only if ¢ ¢ {4,9}. For the unitary and
orthogonal groups, SUs(q) and PSU;s(q) are completions if and only if ¢ is odd
and ¢ ¢ {3,5} and SO3(q)(= PSL2(q)) is a completion if and only if ¢ or \/q is
a prime and ¢ = +1(mod 8).

This paper is arranged as follows— Section 2 begins with two elementary results
concerning completions of the Goldschmidt Gz-amalgam. Then we introduce
a particular type of graph, the orbit graph O(Py, P, ). Here P; and P are
subgroups of Sym/(f2), the group of permutations on Q. This graph, courtesy
of Lemma 2.5, can be used to determine whether (Py, P>} is transitive on € or
not. Definition 2.7 introduces the idea of twisting P; with respect to (A, ¥)
where A and ¥ are certain (P; n Py)-orbits of disjoint sets ¥ and I". This idea,
via Lemma 2.8 plays a central role in the recursive construction, presented in
Section 3, and which underlies the proof of Theorem 1.1. We end Section 2 with
Theorem 2.9, a classical result of Jordan’s.

In Section 3 we give a detailed account of a recursive construction for the case
when n = 0(mod 24). For the remaining congruences we list, in Section 4,
the seed permutations which enable this construction to produce an example
of Alt(n) as a completion of the Goldschmidt Gz-amalgam. Further details on
these seed permutations may be found in Sections 4 and 5.



2 Some preliminary results

Our first result concerns involutions and completions of the Goldschmidt G3-
amalgam

Lemma 2.1. Suppose the group G is a completion of the Goldschmidt Gs-
amalgam A(Py, Ps, B). Then the involutions in Py U Py are G-conjugate.

Proof. As noted earlier, we shall assume P; < G,i = 1,2 with P, n P, = B =~
Dih(8) and P; = Sym(4). Now, for ¢ = 1,2 P; has two conjugacy classes of
involutions C’i(l) and CZ-(Q) with B n CZ-(I) = 0y(P;)*. Since Oy(P;) # Oo(P) and
O2(Py) n O2(P,) # 1, Lemma 2.1 follows. O

Next we see that a completion of the Goldschmidt G3-amalgam, A(Sym(4) x
Za, Sym(4) x Zg, Dih(8) x Z3), for Sym(n) yields a completion of the Gold-
schmidt Gs-amalgam for Alt(n).

Lemma 2.2. If Sym(n) is a completion of the Goldschmidt G}-amalgam, then
Alt(n) is a completion of the Goldschmidt Gs-amalgam.

Proof. Set G = Sym(n) and H = Alt(n). Let P;, P, < G be such that P, =
Sym(4) x Zy and B = Py n Py = Dih(8) x Zg with (P, P;) = G. Also
put R, = O*(P;) =~ Alt(4) and Q; = Oo(R;) = Zy x Zy. Observe that [B :
B n H] =2 for otherwise B < H and then (P, P,) < H # G, a contradiction.
Further we must have n > 5. Note that R; < H,: = 1,2 and that @; and
Q2 normalize each other. Since A(Py, Py, B) is primitive, 1 # Q2. From
Q; < Bn H,i = 1,2, we then see that Q1Q2 = B n H. So Q1Q2 has order
8 and either Q1Q> is abelian or Q1Q> =~ Dih(8). If the former holds, then
Q1Q2 = Cp,(Q;) = O2(P;) for i = 1,2, giving the impossible O2(Py) = O2(Py).
Therefore, B n H = Q1Q2 = Dih(8). Since [P, : P,n H] = 2 for i = 1,2, we
have P, n H = Alt(4) x Zy or Sym(4). The former possibility doesn’t contain
a Dih(8) subgroup and therefore P; n H = Sym(4). To complete the proof we
must show that H = (P n H, P, n Hy. Now B normalizes P, n H,7 = 1,2 and
S0
<P1 ﬁH,PQ ﬂH>§]<P1 ﬂH,PQ (\H,B>= G.

Because n = 5 Alt(n) is simple, whence H = (P, n H, P, n H). O

In proving Theorem 1.1, for specified subgroups P; and P, of G = Alt(n)

we need to show that (P, Po) = G. Not surprisingly, our first step is to prove
that (P;, P») acts transitively on Q = {1,...,n}. This leads us to consider a
particular type of graph which we now define.
Definition 2.3. Suppose G is a finite group acting on a finite set Q with
P; and P, being subgroups of G. Let {Agl), ...,Agl)} and {A?), ...,A,(f)} be,
respectively, the Pj- and Ps-orbits on Q (and we shall regard these sets as
being disjoint). The orbit graph of P, and P, O(P;, P, ), has vertex set
{Agl), - Aél), Agz), - A,(f)} with distinct vertices Agl) and A§»2) adjacent when-
ever their intersection contains a (P n Py)-orbit and the number of edges be-
tween them is the number of (P; n Py)-orbits in Agl) N Af).



We observe that O(Py, P»,{?) is a bipartite graph and that Agl) and A§-2)
being adjacent is equivalent to Agl) N A;Q) # O.

Example 2.4. (i) Q = {1,...,21}, P, = {x,y,2), P = {z,y,w) and B =
Py n Py ={x,y) where

z = (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13, 14)(15, 16);
y = (1,8)(2,3)(4,5)(6,7)(10,11)(13,17)(14, 18)(19, 20);
— (1,11)(2,12)(5,9)(6, 10)(7, 8)(13, 15)(14, 6)(20,21); and

= (1,17)(4, 18)(5, 14)(6, 7)(8, 13)(10, 19)(11, 20)(16, 21).
Here the B-orbits on Q2 are Q1 := {1,2,3,4,5 6 7,8}, Q9 :={9,10,11,12},
Qy = {13, 14,17, 18}, Qu := {15, 16}, Qs := {19,20} and Qg := {21}. The
Py-orbits are Agl) =01 U Qo, Aél) = Q3 U Qy, Aél) = Q5 U Qg and
P5-orbits are A§2) =0 U Q3, A(Qz) = Qo U O, Agf) = Q4 u Q6. So the
orbit graph O(Py, P2,9) is

1 2
NG A
A(Ql) AgQ)
A(ll) Ag2)

Figure 1

(ZZ) = {17“-724}7P1 = <£L',y,Z>,P2 = <x,y,w> and B = P n P, = <$,y>

where

x:=(1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17, 18)(19, 20)(21, 22)(23, 24);
y:=(1,8)(2,3)(4,5)(6,7)(9,16)(10,11)(12,13)(14,15)(17,24)(18, 19)(20, 21)(22, 23);
z:=(1,9)(2,10)(3,20)(4,19)(5,14)(6,13)(7,23)(8,24)(11, 21)(12, 22)(15, 18)(16, 17);
and

w = (1,14)(2,19)(3, 18)(4, 10)(5, 11)(6, 22)(7, 23)(8, 15)(9, 17)(12, 21)(13, 20)(16, 24).
In this case, the B-orbits on Q2 are {1, ...,8}, {9,...,16} and {17, ..., 24} with
both Py and Py acting transitively on Q. Thus O(Py, Py) is

A—q o<> AP —q.

Figure 2




Example 2.4 (ii) plays a central role in proving Theorem 1.1.

Lemma 2.5. Suppose P, Py < Sym(2), Q a finite set. Then {(Py, Py) is tran-
sitive on Q0 if and only if O(Py, P2, Q) is connected.

Proof. Let {Agl), . Agl)} and {A?)7 . A,(f)} be, respectively, the Pi- and P-
orbits on . Suppose (P;, P») acts transitively on ) and let Agl) and A§2) be

vertices of O(Py, P, Q). Choose « € Agl) and 3 € A?). Then o9 = 3 for some
g € (P1,Py). Now g = z122...¢p, where z; € P, U P, and, as z; € P; implies
Agl)xl = A§1)7 we may assume x7 € P>. Put o™ = v and let A((f) be the
Ps-orbit such that v € A,(f). Then o = %1 € Az(-l) N A((IQ) whence Agl) and
ASP are adjacent in O(Py, P, ). Continuing in this fashion yields a path from
Agl) to A§2). Therefore O(Py, Ps,?) is connected.

Now suppose that O(Py, P», Q) is connected, and let «, B € Q. Let a € Agll), B e

AZ(-]?. We may find a sequence of P;- and Py-orbits in which the ¢th and (£+1)th
orbits have non-empty intersections. This then gives g € (P, P») for which
a9 = 3, and so (Py, P») is transitive on ). O

Hypothesis 2.6. Suppose G and H are subgroups of, respectively, Sym()
and Sym(T") where Q and T are finite sets which are disjoint. Assume that G
contains subgroups Q1 and Q2 with C = Q1N Q2 and that H contains subgroups
Ri and Ry with D = Ry n Ry. Further assume that 0; : QQ; — R;,i = 1,2, are
isomorphisms for which 01(x) = 02(x) for all x € C and Im(C) = D. For xz €
Qi, i = 1,2 we regard x as a permutation on QUL by letting x act as the identity
on T and 0;(x) as a permutation on QUL by letting 0;(x) act as the identity on
T. Define subgroups B, P;, i = 1,2 of Sym(QUT) by P, = {x6;(z)|x € Q;} and
B = {z0;(x)|z € C}.

We sometimes refer to Py, P>, B as being the concatenation of @1, @2, C and
Rl,RQ,D. Note that Pl = Ql = Rl,PQ = Q2 = R2 and B=C =~ D.

Definition 2.7. Assume Hypothesis 2.6 and let A and ¥ be B-orbits of, re-
spectively, Q and I" which are isomorphic as B-sets. Now let ¢ = g(A,¥) €
Sym(QUT') be an involution in Cgymqor)(B) which interchanges A and ¥ and
fixes all other points of QUI'. Then we refer to the conjugate P} as twisting Py
(with respect to (A, ¥)).

We note in Definition 2.7 that Py n P, > B (in situations we encounter we
shall have P{ n P, = B).

Lemma 2.8. Assume Hypothesis 2.6 holds, and use the notation given there.
Let g = g(A,¥) where A and VU are B-orbits of Q and T' respectively which
are isomorphic B-sets. Suppose {(Py, Py) is transitive on both Q and I'. Then
(P{, Py) is transitive on QUI if and only if the edge in O(Py, P2, QUT") corre-
sponding to A or the edge in O(Py, Py, QUT) corresponding to W is part of a
cycle in O(Q1, Q2, ), respectively, O(Ry, R, T).



Proof. By Lemma 2.5, as (P;, P») is transitive on 2 and I', O(Q1, Q2,2) and
O(R1, R, T') are both connected graphs. Suppose A € Al(,l) N A((f) and U C
\I/,(«l) m\I/g2) where AZ(,l), A,(f) are, respectively P;- and Py-orbits of I and \I’S,I), \IIEQ)
are respectively P;- and Ps-orbits of I'.  So A;,l) and A¢(12) are adjacent in
0(Q1,Q2,9Q) and i and U are adjacent in O(Ry, R2,T). Since g = g(A, ¥)
fixes all points in (QUT)\(A U ¥), P{ has the same orbits on QUI" as P; ex-
cept Aél) and UV are replaced by, respectively, AS) = (A,(,l)\A) v ¥ and
\IIS) = (\I/,(al)\\Il) v A. Thus A € A((ZQ) N \117(}) and ¥ c 0¥ A AS), whence A((ZQ)
and \I/S) are adjacent, as are (¥ and A](;) in O(Py, P, QUT). Since (P, Py)
is transitive on QUT if and only if O(P{, P, QUT) is connected, the lemma now
follows. O

The following theorem is a classical one of Jordan’s, which appears as The-
orem 13.9 in [9]. This theorem suffices for our work. However, in [8], a general-
ization of this result is needed to deal with some of the other cases.

Theorem 2.9. (Jordan) Let G be a primitive permutation group of degree n
with a cycle of length p* > 1 where p is prime. If n > p* + 4, then G = Alt(n)
or G = Sym(n).

3 A recursive construction

Put G = Alt(n) and let Q = {1,...,n} be the standard G-set. Bearing in
mind Lemma 2.1, we are looking for G-conjugate involutions which generate
appropriate Sym(4) subgroups of G. Thus we seek conjugate involutions z,y, z
and w of G such that

Hypothesis 3.1. (i) (zy)? is conjugate to x;
(ii) z € Ng({z,(y)?)) and zx = xz;
(iii) w € Na((y, (zy)?)) and wy = yw;
(iv) zy and wx both have order 3; and
(v) G =<z,y,2,w)
These conditions will ensure that for B = {x,y), P, = {z,y,z) and Py =
{x,y,w) we have Py n P, = B = Dih(8) and P; = Sym(4), i =1,2.
As indicated earlier Example 2.4(ii) will be important, one reason being

given in our next result

Lemma 3.2. Let z,y,z,w,P1 and Py be as in Example 2.4(ii). Then P; =
Sym(4), 1= 1,2, P1 N PQ = D’Lh(S) and G = <P1,P2>. Thus (Pl,Pg) exhibit
Alt(24) as a completion of the Goldschmidt Gs-amalgam.



Proof. Tt is straightforward to verify Hypothesis 3.1 (i)-(iv) for z,y, z,w. So it
remains to show that (v) holds. Since O(Py, P,, () is connected, Lemma 2.5 im-
plies {(P1, Py) acts transitively on . Calculation reveals that h = [w, z]"y[w, 2]
has cycle type 51.191. So h® € (P, P,) is a 19-cycle. Hence, all the points of
Q in this 19-cycle either lie in the same block of a (P, Py)-system of imprimi-
tivity or they all lie in separate blocks. So any {P;, P»)-system of imprimitivity
must either have block size at least 19 or at least 19 blocks. Since {Py, P»)
acts transitively on Q and |Q] = 24, we conclude that (P;, P,) acts primi-
tively on Q. Furthermore, the presence of a 19-cycle, by Theorem 2.9, confirms
{z,y,z,w)y = G, so proving the lemma. O

Now Example 2.4(ii) shows O(Py, Pa, Q) where 2 = {1, ..., 24} has cycles and
hence Lemma 2.8 becomes available to us. Put G,,, = Alt(m), acting on Q,, =
{1,...,m} and suppose Q\™,Q{™ C™ are subgroups of G,, with Q\"™ =
Sym(4), i =1,2 and Q™ ~ QY™ = ¢™) =~ Din(8) with Q™ Q™) = G,
(so Gy, is a completion of the Goldschmidt Gs-amalgam). Also let H = Alt(24)
with H acting upon I' = {m + 1, ...,m + 24} with Ry, Ra, D subgroups of H as
given in Example 2.4 (R; = Sym(4), RinRy = D = Dih(8)). Since the D-orbits
on T are regular, to employ Definition 2.7 we require that C™ has a regular
orbit on §2,,. So we further assume that this is the case, letting A = {1,...,8}
be such a regular C™)-orbit and, restricted to A, = = (1,2)(3,4)(5,6)(7,8)
and y = (1,8)(2,3)(4,5)(6,7) (we can achieve this by conjugating the ng)).
Let Ty, Ym, Zm, Wi be the generators for G, as given in Hypothesis 3.1 which
give Q™ and C™. So Q™ = (. Yms 2 QY™ = (Zms Y, W) and
C™) = (Zp,Ym). The corresponding generators for H are 2’4, 2, w’ where
Ry =,y ,2"), Re =z, y/,wyand D = {z',y'yand ¥ = {m+1,...,m+8}isa
regular D-orbit upon which, restricted to ¥, 2/ = (m+1, m+2)(m+3, m+4)(m+
5,m+6)(m+7,m+8),y" = (m+1,m+8)(m+2, m+3)(m+4, m+5)(m+6,m+7).
Put Q = Q,,U'. Then we may define subgroups P, P, < Sym() and B =
P, n P, as in Hypothesis 2.6. Thus we have P, = Sym(4) and B =~ Dih(8).
Now take g(A, ¥) € Sym(£2) where

g(A, ) = (1, m+1) (2, m+2)(3,m+3) (4, m+4)(5, m~+5)(6, m+6) (7, m+7)(8, m+8)

Then g(A, W) satisfies the conditions of Definition 2.7 and so we may twist
Py with respect to (A, ¥). Because of Lemma 2.8 we have that (P{, P,) is a
transitive subgroup of Sym() which is actually a subgroup of Alt(€2). The-
orem 1.1 is proved (constructively) by beginning with an appropriate G, and
appropriate ng), ng), Cm) | and then ”adding” copies of H. Thus the proof
must consider twenty four cases given by the congruence of n (mod 24) where
n = m + 24k. For the full details we direct the reader to [8] or to the seed
permutations given in Section 4 and here we will look at starting with m = 48
and repeatedly ”adding” copies of H. We remark that recursive constructions
of this ilk have also been employed in [1] and [6].

Definition 3.3. If we begin with G = Alt(m) and recursively add on copies
of H, then any points greater than m will be denoted with numbers {1, ..., 24}



with an appropriate subscript attached. Explicitly, the number m + 247 + j will
be denoted j;41 for j € {1,...,24}. In simpler terms, this will see the ith set of
24 points to be labelled {1,,...,24;} for 1 < ¢ < k. The points {1,...,m} can be
considered as having the subscript 0 attached, which will be useful in writing
down the cycle decomposition of z but not generally noted otherwise.

The labels j; and m 4 24(i — 1) + j will be interchangeable depending on which
is most convenient.

Theorem 3.4. For n = 0(mod 24), Alt(n) is a completion of the Goldschmidt
Gz-amalgam.

Proof. Starting at m = 48, we take the following elements in G = Alt(48 +24k):-

Tasroar :=(1,2)(3,4)(5,6)(7,8)(9,10)(11, 12)(13, 14)(15, 16)(22, 23)(24, 25)(28, 29)
(30, 31)(32,33)(34, 35)(36, 37) (38, 39) (40, 41) (42, 43)

k
H (14,2:)(34,4:)(54,6;)(7:,8:)(9:,10;)(11;,12;)(13;, 14;)(15;, 16;)(17;, 18;)
=1

s

(19;,20;)(214,22,)(23;, 24;);

Y4824k (1 8)( )( )(6, 7)(10, 11)(13, 17)(14, 18)(197 20)(22, 24) (26, 27)
(28, 35)(29, 30)(31, 32)(33, 34) (37, 38) (40, 44) (41, 45) (46, 47)

k

H(li, 8:)(2i,3:)(44,5:) (64, 74) (94, 16;)(10;, 11;) (124, 13;) (144, 15;)
gl_7 24;)(18;,19;)(20;, 21;)(22;, 23;);

zagr2ak =(1k, 38)(2k, 39)(5k, 36) (6, 37) (7, 8%)(9, 10)(13, 16)(14, 15)(20, 21)
(22,35)(23, 34) (24, 30) (25, 31) (26, 27) (28, 29) (40, 42) (41, 43) (47, 48)

k
(11'—1, 9:)(2i—1,10;)(3i—1,20;) (4i—1,19;) (5i—1, 14;) (6;—1, 13;)(7i—1,23;)

,_.

wag 2k : (1, 17)(4, 18)(5, 14)(6, 7)(3. 13)(10, 19)(11, 20)(16, 21)(22, 26)(24, 27)
(28,44)(31,45)(32, 41)(33, 34)(35, 40) (37, 46) (38, 47) (43, 48)

:w

—

(122,21 )(13;,20;)(16;, 24;).

For convenience we will denote x4gy 24k, Y48+ 24k, 248+ 24k, Wast 24k SIMPly as x, y, 2, w
throughout this proof. Put Q = {1, ...,48+424k}. We consider H = {(zyz)¥, z,x) <
{x,y, z, wy and show that H fixes 19 and is transitive on Q\{19}. Hence<{z,y, z, w)
is 2-transitive on €. In fact, the generator x is not necessary here but it will

(15, 14;)(24,19;) (34, 18;) (44, 10;) (54, 11;) (64, 22,)(74,23;) (84, 15:) (9, 17;)



simplify the proof. First we look at (zyx)* and see that

(zyz)® =(19)(22)(24)(1,5,21)(2, 211, 161)(3, 61, 11)(4, 8, 15)(6, 121,171 )(7, 51, 21)
(9,12,20)(10,11,16)(13,31,201) (14,241, 71)(17,81,131)(18,91,41)
(23,41, 30)(25, 34, 40)(26, 29, 33)(27, 44, 45)(28, 32, 42) (31, 35, 48)
36, 18y, 144) (37, 38, 43)(39, 105, 22,) (46, 155, 11,) (47, 231, 195
k-1
[ 1C105,9i 1, 4i00) (115, 24441, Tigr) (144, 8141, 1351) (154, 3141, 20541
i=1

(18;,6i4+1,1i41)(19:, 21541, 16,41) (224, 5441, 2i4+1)(234, 12,11, 17541).

The following subgraphs of O({(zyx)*),{z), ?) will help to show that H is tran-
sitive on Q\{19}, where the orbits of {(zyx)™) are on the left hand side and orbits
of {z) are on the right. For the moment we assume k > 2, dealing with & = 0, 1
later.

Looking at Figure 3 and Figure 4, the following are subsets of H-orbits:

A; = {1,3,5,9,10,11,12, 13,16, 18, 20,21, 11, 31, 41, 61,91, 201 },

Ay = 1{2,6,17,81,12,, 13,164,171, 21, },

As = {4,8,14,15,24,, 7, },

Ay = {7,21,51},

As = {22,23,24, 25, 26,27, 28,29, 30, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 45,
47,48, 15, 65, 195, 234,

Ag = {36,39,46, 2%, 5, 104, 11, 125, 144, 155, 165, 175, 18x, 215, 221},

A7 = {7k7 8k, 13k7 24k},

Ag = {Sk,QOk} and

Ag = {4]()79k‘}



{7,51,21} O
{4,8,15} O\O
{14,24,,7:} © {14,15}

{177817131} O\O
{6a1217171} O\O {6)131}
{2,21,,16,} O {164,171}

(3,61,11) O\O
(13,31,20,} (3,201}
(10,11,16} O\o (13,16}
(9,12,20} O\o (9,10}
(1,5,21) O\o (20,21}
(18,9141} 2\0 (1,9}

Figure 3

{9k74k} O
{3]@7201{} O

{8k, 13k} O\O
{24k»7k} O {7k,8k}
{39,10,22,}

{5k,2x } Oosoo {2k,39}
(36,184,141} (54,36}
{46,15,115} O\o (155,18}

(214,161} O\o (11,,213)

{12k717k} g\o {lﬁk,17k}
{Gk,lk} O\O

{37,38,43} o\ (14,38}

{24} © {24,30}
{23,41,30} {41,43}
{47,23,,19,} {23,34}
{22} {47,48}
{31,35,48} {22,35}
{25,34,40} {25,31}
{28,32,42} O\O {40,42}
{26,29,33} O\O {28,29}
{27,44,45} O {26,27}
Figure 4
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However, when also considering orbits of {z), we can connect these further
as in Figure 5, which shows that A1 UA; UA3UAs and AsUuAguUu Az UAgUAg
are subsets of H-orbits, with {1, ...,24;} € A5 U Ag U A7 U Ag U Ag.

{As}

{Ag} O\O {3n,41}
(A7) — {134,141
{Ae} @ {9510k}
{As} O {36,37}
{A4} O\O

{As} O\O {7.8}
{A} O\O {3.4}
{A2} O {1,2}

Figure 5

When 1 € i < k — 1, Figure 6 shows that the following are subsets of H-

Ag, = {14,64,104, 144,441, 8i 41, %41, 13541},

A, = {8;,11;,12;,13;,16;,17;,21;,22;, 2,411,541, Ti+1, 2441},
Aig = {4;,9;,15;,18;, 1i41, 3541, 651, 20,41 },

Agy o= {194,23,1244116;41,17;11,214 41},

Aig = {74, 24;},

Ais = {3,’,201'} and

Ai7 = {22,52}

Now, considering the orbits of {x) we can see that A; := {1,,...,24;, 1,41} is
a subset of an H-orbit with the help of Figure 7. Clearly, there are more points
with subscript ¢ + 1 that we could include, but all we require is that there is at
least one, hence 1;.1 € A; n A;11 and therefore, Ufz_ll A;  T', where I is an
H-orbit.

11



{5:,2i} O
{31‘,201} O
{24;,7:} O

{19;,21;11,16i11}
{23,12i41,17141} 2\0 {16;41,17541}
{22:,5i 41,2111}
{12h17d-2:::::::::::::::::::§§{12h22g
{21h16ﬂ'C-~\\\\\\\§\\‘§\\\\\{>{16“17ﬁ
{115,24i 41,711} o-\\\‘\\\\\\\\\\\\\{>{11“21g
{8i,13i} O {84,241 41}
{18,611 1,111}
1154,3i41,205 41} OOQO {15;,18;}
{9:,4;} O {4:,19;11}

{14;,8i11,13i41} O\O
{6,1:} O\O {64,13i41}
{10;,9i41,4i+1} O {1;,9i11}

Figure 6

{Air} O\O

{Ai,} O\O {1:,2;}
{Ais} O\O {9:,10;}
{Aig} O\O {3:,4;}
{Ai} {19,,20;}
(A} o 23,,24,)
{Azz} 2\0 {71‘,81}

Figure 7

Since A1 U Ay U Az u Ay contains points with subscript 1- all of which are in

Ay € T, we have AjUAUA3UA, € T also. Finally, Ag—1n(AsUAgUA7UAgU

Ag) = {1k} SO A5 v Aﬁ v A7 () Ag U Ag cr and I' = {1, ,48+24/{3}\{19}, {19}

are H-orbits. Consequently {(z,y, z, w) is 2-transitive when k > 2. For k = 0,

consider (zyx)“z € H,

(zyx)"z =(19)(1, 36, 3,17,5,20,10,11,13,15,4,7,2,48,25,23,43,6, 39, 18, 8, 14, 46,
16,9,12,21,38, 41, 24, 30, 34, 42, 29, 33, 27, 44, 45, 26, 28, 32, 40, 31, 22, 35,
47,37).

This is a 47-cycle, so clearly H is transitive on all points except for 19.

12



When k£ = 1, we have

(zyz)¥z =(19)(1, 62, 53, 39, 2,59, 46, 66, 5, 20, 10, 11, 13, 51, 3, 37, 49, 68, 16,9, 12, 21,
57,52,18)(4, 72, 56, 6, 70,50, 71)(7, 36, 63,69, 65,61, 17, 55, 15, 67, 48, 25, 23,
43,54, 38, 41,24, 30, 34, 42, 29, 33, 27, 44, 45, 26, 28, 32, 40, 31, 22, 35, 47)(8,
14)(58, 60, 64).

Here, z contains the transpositions (2,58),(4,67),(8,72) and (60,70). These
transpositions connecting the first and fifth, second and third, fourth and sec-
ond and fifth and second cycles respectively- that is to say, they contain one
point from each therefore proving that all of the points in both of those cycles
must belong to the same H-orbit- to form the H-orbit {1, ..., 72}\{19}.

So, for all k = 0 {x,y, z,w) is 2-transitive. Now we are in a position to demon-
strate that G = {(x,y, z, w), using the element zw.

Suppose that k£ # 0. Observing the cycle decomposition of zw leads to us
noticing that it follows patterns depending on the value of k (mod 2). When
k = 0(mod 2), we analyse the cycles in zw. Here, the underlined parts of the
cycle are "repeated”, only with the subscript on the points in subsequent or
previous repeated parts being respectively higher or lower by the same amount
with each repetition:

(2,41,22,45,24, ...... v Ak—3,2k—9,4k_1,2k,39,19k, 101,192, 10k _1, ...... , 194,
103,195,104)

(4,21, 45, 25,44, o, 255, 42, 261, 45, 105, 1951, 1052, 1943, ..., 104, 195, 10,
194, 18) o
(3,131,7,71, 72, o, Tk—1, Th> 15k, 3, 18k, 8k, 235, 23k—1, ..., 232, 231, 6,201
(5,11,172,245,151,31,132,221,214,51, 1, .0, 11, 175, 245, 1551, 3p—1, 135, 221,
21p—1,55-1,1p,47,43,32,41,48,38, 14%, 111,125 1,65 1,20k, 1851, 8,1, 16,
g, 14 _1,..., 142, 111,124,641, 209, 181, 81,162, 99, 141, 14, 15)

22,40, 42, 35, 26, 24, 30, 27),

9,19,10),

23,33,34),

25,45,31),

28,29,44),

36, 115, 12, 65, 46, 37, 22, 215, 5,
(1,174,244,13,21,11,20,16,8,164,8,161,91).

So, by counting the lengths of these cycles, we see zw is an element of cycle
type (18k — 7)1.(2k + 9)1.(2(1 + k))%.121.91.81.3%.1! for which we can see the
first two cycles are of odd length and the third will be divisible by 2 but not
4. Overall, this means that the only cycle of length divisible by 8 is the 8-cycle
(22,40, 42, 35,26, 24, 30, 27).

When &k = 1(mod 2) we have the following cycles:

(2,41,22,43, ..., 452,251, 4%, 10, 191, 10x 2, ..., 103, 192, 104 )

(4,21,42,23, ..., 2;—2,45_1, 2k, 39,19, 1051, 192, ..., 193, 102, 197, 18)
(6,201,3,131,7,71,72, ..., Tk—1, Tk, 15k, 35, 18k, 8k, 23k, 231, ..., 232, 231)
(5,11,175,245, 151, 31,135,221, 211,51, 19, oo, L1, 175, 245, 1551, 351, 134,
225 1,211, 5k—1, 1%, 47,43,32,41,48,38, 144, 111,121,651, 20%, 18, _1,8%—_1,

NN AN AN AN N
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165, 9%, 14)_1, ..., 145,111, 121,61, 205, 181, 81, 162, 9, 14;, 14, 15)
(22,40, 42, 35,26, 24, 30, 27),
(9,19, 10),

(23,33,34),

(25,45,31),
(

(
(

98,29, 44),

36, 114, 125, 65, 46, 37, 224, 214, 51.),

1,17,24,,13,21,11, 20, 16,8, 161, 8, 16,,9,).

All of this gives a cycle type of (18k — 7)L.(2k + 9)L.(5 + 2(k — 1))1.(3 +

2(k — 1))1.121.91.81.3%.11, for which we can see that the first four cycles will

all be of odd length and no others divisible by 8 other than the one 8-cycle
(22,40, 42, 35, 26,24, 30, 27).

In both cases, for some large odd number f, (zw)*/ = (22, 26)(24,40)(27,35)(30,42) =:
cand ¥ = (24, 27)(22, 44)(26,28)(29, 42) s0 cc¥ = (22,28, 26, 44)(24, 40, 27, 35)(30, 29,
42) and (cc¥)* is a 3-cycle, sufficient by Theorem 2.9 to confirm that G =
{x,y, 2, w).

Finally, for k£ = 0 we calculate that zzw = (1,39, 17)(2,47, 43, 35, 23, 40, 48, 38)
(3,18,4)(5,46,37, 14,21, 11,12, 20, 16)(6, 36, 7)(8, 13, 15)(10, 19)(22, 33, 41, 42, 32,
34,26,24,45,31,27)(25,30)(28, 44), which has cycle type 111.91.8.3%.22.12, there-
fore (zzw)%® is an 11-cycle, sufficient by Theorem 2.9 to confirm that G =

{x,y,z,w).
So for all k > 0, G = {(z,y, 2z, w), which completes the proof of Theorem 1.1 in
the case n = 0(mod 24). O

4 Seeds for the recursive construction

The following generators provide a starting point for the recursive method of
adding 24 points for each case modulo 24. In each case {1,...,8} is a regular
{x,y)-orbit with z = (1,2)(3,4)(5,6)(7,8) and y = (1, 8)(2,3)(4,5)(6,7) on this
orbit. So, we can take A = {1,...,8} and ¥ = {m + 1,...,m + 8} as the two
orbits to twist by.

When n = 0(mod 24), we may start at m = 24 with:

z = (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13, 14)(15,16)(17, 18)(19, 20)(21, 22)(23, 24);
y = (1,8)(2,3)(4,5)(6,7)(9,16)(10,11)(12, 13)(14, 15)(17, 24)(18, 19)(20, 21)(22, 23);
2= (1,10)(2,9)(3,20)(4, 19)(5, 13)(6, 14)(7, 23)(8, 24) (11, 17)(12, 18)(15, 22)(16, 21);

w = (1,10)(2,22)(3, 23)(4, 14)(5, 15)(6, 19)(7, 18)(8, 11)(9, 21)(12, 17)(13, 24) (16, 20).

When n = 1(mod 24), we may start at m = 25 with:

1= (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13, 14)(15, 16)(17, 18)(19, 20);

y = (1,8)(2,3)(4,5)(6,7)(10,11)(14, 15)(17, 21)(18, 22)(19, 20) (23, 24);

2= (1,12)(2, 11)(3,4)(5, 10)(6, 9)(13, 14) (17, 19)(18, 20)(21, 22) (24, 25);

w = (1,17)(2,3)(4, 18)(5, 22)(8, 21)(10, 24) (11, 23)(13, 16) (14, 19) (15, 20).

When n = 2(mod 24), we may start at m = 26 with

= (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13, 14)(15, 16)(17, 18)(19, 20) (21, 22)(23, 24);
y = (1,8)(2,3)(4,5)(6,7)(9,16)(10, 11)(12, 13)(14, 15)(18, 19)(21, 25)(22, 26) (23, 24);
2= (1,8)(2,7)(3,5)(4,6)(9,10)(11, 18)(12, 17)(15, 20)(16, 19)(21, 24)(22, 23)(25, 26 );
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w = (1,25)(4, 26)(5,22)(6, 7)(8, 21)(9, 14)(10, 12)(11, 13)(15, 16)(17, 20)(18, 23)(19, 24)
When n = 3(mod 24), we may start at m = 27 with:

2= (1,2)(3,4)(5,6)(7,8)(9, 10)(11, 12)(13, 14)(15, 16)(17, 18)(19, 20);

y = (1,8)(2,3)(4,5)(6,7)(10, 11)(14, 15)(17, 21)(18, 22)(23, 24)(25, 26);

2= (1,13)(2, 14)(3,4)(5, 15)(6, 16)(9, 10)(17, 20)(18, 19)(23, 27)(25, 26);

w = (1,18)(2,3)(4,17)(5, 21)(8, 22)(10, 24)(11, 23)(14, 26) (15, 25)(19, 27).

When n = 4(mod 24), we may start at m = 28 with:

= (1,2)(3,4)(5,6)(7,8)(9, 10)(11,12)(13, 14)(15, 16)(17, 18)(19, 20);

y = (1,8)(2,3)(4,5)(6,7)(10, 11)(14, 15)(17, 21)(18, 22)(23, 24)(25, 26);

2= (1,2)(3,10)(4,9)(7, 12)(8, 11)(15, 16)(17, 19)(18, 20) (24, 28)(26, 27);

w = (1,18)(2,3)(4,17)(5, 21)(8, 22)(10, 23) (11, 24) (14, 25) (15, 26)(20, 27).

When n = 5(mod 24), we may start at m = 29 with:

2= (1,2)(3,4)(5,6)(7,8)(9, 10)(11, 12)(13, 14) (15, 16)(17, 18)(19, 20)(21, 22)(23, 24);
y = (1,8)(2,3)(4,5)(6,7)(9,16)(10, 11)(12, 13)(14, 15)(18, 19)(21, 25)(22, 26)(27, 28);
2= (1,18)(2, 17)(5, 20)(6, 19)(7, 8)(9, 15)(10, 16)(11, 14)(12, 13)(21, 23) (22, 24)(28, 29);
w = (1,2)(3,8)(4,6)(5,7)(9,22)(10, 11)(12, 21)(13, 25)(16, 26)(18, 28)(19, 27) (24, 29).
When n = 6(mod 24), we may start at m = 30 with:

2z = (1,2)(3,4)(5,6)(7,8)(9, 10)(11, 12)(15, 16)(17, 18)(19, 20)(21, 22) (23, 24) (25, 26)

y = (1,8)(2,3)(4,5)(6,7)(9,16)(10,11)(12, 13)(14, 15)(17, 24)(18, 19)(20, 21)(22, 23)
(26,27)(29, 30);

2= (3,25)(4, 26)(5, 6)(7, 27)(8, 28)(9, 15)(10, 16)(11, 14)(12, 13)(17, 20)(18, 19)(21, 23)
22,24)(30, 31);

w = (1,24)(2,13)(3,12)(4, 20)(5, 21)(6, 16)(7, 9)(8, 17)(10, 18)(11, 19)(14, 23)(15, 22)

(26,29)(27, 30).

When n = 8(mod 24), we may start at m = 32 with:

2= (1,2)(3,4)(5,6)(7,8)(9, 10)(11, 12)(13, 14)(15, 16)(17, 18)(19, 20)(21, 22)(23, 24)
(25,26)(27,28)(29,30)(31, 32);

y = (1,8)(2,3)(4,5)(6,7)(9,16)(10, 11)(12, 13) (14, 15)(17, 24)(18, 19)(20, 21)(22, 23)
(25, 32)(26, 27)(28, 29)(30, 31);

2= (1,9)(2,10)(3,20)(4,19)(5, 14)(6, 13)(7, 23)(8, 24) (11, 21)(12, 22) (15, 18)(16, 17)
25,32)(26,31)(27,29)(28, 30);

w = (1,2)(3,8)(4,6)(5,7)(9, 22)(10, 27)(11, 26)(12, 18)(13, 19)(14, 30)(15, 31)(16, 23)
(17,25)(20,29)(21, 28) (24, 32).

When n = 9(mod 24), we may start at m = 33 with:

z = (1,2)(3,4)(5,6)(7,8)(9,10)(11, 12)(13, 14)(15, 16)(17, 18)(19, 20)(21, 22)(23, 24)
25,26)(27, 28);
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y = (1,8)(2,3)(4,5)(6,7)(9, 16)(10, 11)(12, 13)(14, 15)(18, 19)(22, 23)(25, 29) (26, 30)
(27, 28)(31, 32);

2= (1,21)(2,22)(3,4)(5,23) (6, 24)(9, 18) (10, 17)(13, 20) (14, 19)(15, 16)(25, 28)(26, 27)
(29,30)(32, 33):

w = (2,29)(3,25)(4, 5)(6,26)(7,30)(9, 11)(10, 16)(12, 15)(13, 14)(17, 20)(18, 27)
(19,28)(22, 32)(23, 31).

When n = 10(mod 24), we may start at m = 34 with:

= (1,2)(3,4)(5,6)(7,8)(9, 10)(11,12)(13, 14)(15, 16)(17, 18)(19, 20)(21, 22)(23, 24)
(25, 26) (27, 28)(29, 30) (31, 32):

y = (1,8)(2,3)(4,5)(6,7)(9,16)(10, 11)(12, 13)(14, 15)(17, 24)(18, 19)(20, 21) (22, 23)
(26, 27)(29, 33)(30, 34) (31, 32):

2= (1,3)(2,4)(5,8)(6,7)(9, 26)(10, 25)(13, 28) (14, 27) (15, 16) (17, 23) (18, 24)(19, 22)
(20, 21)(29,32)(30, 31)(33, 34);

w = (1,14)(2,19)(3, 18)(4, 10)(5, 11)(6, 22)(7, 23)(8, 15)(9, 17)(12, 21)(13, 20)(16, 24)
(25,28)(26, 31)(27, 32)(30, 34).

When n = 11(mod 24), we may start at m = 35 with:

2= (1,2)(3,4)(5,6)(7,8)(9, 10)(11, 12)(13, 14)(15, 16)(17, 18)(19, 20) (21, 22)(23, 24)
(25,2 )(277 28);

y = (1,8)(2,3)(4,5)(6,7)(9,16)(10, 11)(12, 13)(14, 15)(18, 19)(22, 23) (25, 20) (26, 30)
(31,32) (33, 34):

2= (1,23)(2,24)(5, 21)(6,22)(7,8)(9, 19) (10, 20)(13, 17)(14, 18)(15, 16)(25, 28)(26, 27)
(31,32)(34, 35);

w = (1,2)(3,8)(4,6)(5,7)(9, 16)(10, 25)(11, 29)(14, 30)(15, 26)(18, 32)(19, 31)(22, 34)
(23,33)(27, 35)

When n = 12(mod 24), we may start at m = 36 with:

= (1,2)(3,4)(5,6)(7,8)(9, 10)(11, 12)(13, 14)(15, 16)(17, 18)(19, 20)(21, 22) (23, 24)
(25,26)(27, 28);

y = (1,8)(2,3)(4,5)(6,7)(9,16)(10, 11)(12, 13)(14, 15)(18, 19)(21, 29)(22, 30)(23, 31)
(24, 32)(33, 34);

2= (1,8)(2,7)(3,5)(4, 6)(11, 20)(12, 19)(13, 14) (15, 18)(16, 17)(21, 26)(22, 25)(23, 27)
(24,28)(33, 35);

wi= (1,32)(4,31)(5,23)(6,7)(8,24)(9, 30)(12, 29)(13, 21)(14, 15) (16, 22)(18, 34)

(19, 33)(26, 36)(27, 35).

When n = 13(mod 24), we may start at m = 37 with:

= (1,2)(3,4)(5,6)(7,8)(9, 10)(11, 12)(13, 14)(15, 16)(17, 18)(19, 20)(21, 22) (23, 24)
(25,26)(27, 28)(29, 30)(31, 32);

v = (1,8)(2,3)(4, 5)(6,7)(9, 16)(10, 11)(12, 13)(14, 15)(17, 24)(18, 19)(20, 21)(22, 23)
(26,27)(30, 31)(33, 34)(35, 36);

2= (1,26)(2, 25)(5, 28)(6, 27)(7, 8)(9, 12)(10, 11)(13, 15)(14, 16)(17, 29)(18, 30)
(19,20)(21, 31)(22, 32)(33, 37)(35, 36):

w = (1,14)(2,19)(3, 18)(4, 10)(5, 11)(6, 22)(7, 23)(8, 15)(9, 17)(12, 21)(13, 20)(16, 24)
(26, 33)(27, 34)(30, 35)(31, 36).

When n = 14(mod 24), we may start at m = 14 with:

= (1,2)(3,4)(5,6)(7,8)(9, 10)(11,12);

y = (1,8)(2,3)(4,5)(6,7)(9,13)(10, 14);

z:=(1,8)(2,7)(3,5)(4,6)(9,11)(10,12);
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24), we may start at m = 15 with:
6)(7,8)(9,10)(11,12);
5)(6,7)(10, 11)(13, 14);
1,9)(7,12)(8, 11)(14, 15);

,5)(7,8)(10,13)(11, 14).

24), we may start at m = 40 with:
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32)(33,34)(35, 36) (37, 38)(39, 40);
(9,16)(10,11)(12, 13)(14, 15)(17, 24)(18,19)(20, 21)(22, 23)
31)(33, 40)(34, 35)(36, 37)(38, 39);
(9,25)(10, 26)(11, 21)(12, 22)(13, 30)(14, 29)(15, 18)(16, 17)
(24, 32)(33, 35)(34, 36)(37, 40) (38, 39);
8)(4,34)(5,35)(6,22)(7, 23)(8, 39)(9, 10) (11, 16)(12, 14)(13, 15)
(24,40)(25, 26)(27, 32)(28, 30)(29, 31).
24), we may start at m = 41 with:
,6)(7,8)(9,10)(11, 12)(13, 14)(15, 16)(21, 22)(23, 24)(25, 26)(27, 28)
3,34)(35, 36);
15)(6,7)(10, 11)(13, 17)(14, 18)(19, 20) (21, 28) (22, 23) (24, 25)(26, 27)
,38)(39, 40);
5,29)(6,30)(7,8)(9,24)(10, 23)(11, 28)(12, 27)(13, 15)(14, 16)(19, 20)
,36)(40, 41);
4,13)(5,17)(8,18)(10,19)(11, 20)(15, 16)(21, 37) (24, 38) (25, 34)
9)(31 40)(36, 41).
24), we may start at m = 18 with:
(7,8)(9,10)(11, 12)(13, 14)(15, 16);
(6,7)(10,11)(13, 17)(14, 18)(15, 16);
(4,6)(9,10)(13, 15)(14, 16)(17, 18);
,14)(6,7)(8,13)(9, 12)(10, 15)(11, 16).
, we may start at m = 43 with:
18)(9,10)(11, 12)(13, 14) (15, 16)(23, 24) (25, 26) (27, 28)(29, 30)
(37, 38);
,7)(10, 11)(15, 17)(16, 18)(19, 20)(23, 30)(24, 25) (26, 27)(28, 29)
(

1)(6 32)(7,8)(9,27)(10,28)(11,23)(12,24)(13,16)(14, 15)(20, 21)
8)(42,43);

)(6,16)(7,18)(10,19)(11,20)(14, 22)(23, 39)(26, 40)(27, 36)
(33,42)(38,43).

, we may start at m = 20 with:

8)(9 10)(11,12)(13,14)(15,16);

7)(10 11)(13,17)(14,18)(19, 20);

,12)(8,11)(13,15)(14, 16)(19, 20);
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, we may start at m = 21 with:
,8)(9,10)(11,12)(13,14)(15,16);
,7)(10,11)(15,17)(16, 18)(19, 20);
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2= (1,12)(2,11)(3,4) (5, 10)(6, 9)(13, 16) (14, 15)(19, 21);

w = (1,3)(2, )(4, 7)(5,6)(10, 20)(11, 19)(14, 21)(16, 18).

When n = 22(mod 24), we may start at m = 22 with:

2= (1,2)(3,4)(5,6)(7,8)(9,10)(11, 12)(13, 14)(15, 16);

y = (1,8)(2,3)(4,5)(6,7)(10, 11)(13, 17)(14, 18)(19, 20);

2= (1,11)(2,12)(5,9) (6, 10)(7, 8)(13, 16)(14, 15)(20, 21);

w = (1,8)(2,14)(3,18)(6, 17)(7, 13)(10, 20)(11, 19)(15, 22)

When n = 23(mod 24), we may start at m = 47 with:

2 = (1,2)(3,4)(5,6)(7,8)(9, 10)(11, 12)(13, 14)(15, 16)(17, 18)(19, 20)(21, 22)(23, 24)
(25,26)(27, 28)(29, 30) (31, 32) (33, 34) (35, 36) (37, 38) (39, 40) (41, 42) (43, 44);

y = (1,8)(2,3)(4,5)(6,7)(9,16)(10, 11)(12, 13)(14, 15)(17, 24)(18, 19)(20, 21)(22, 23)
(25,32)(26,27)(28, 29)(30, 31)(33, 40) (34, 35) (36, 37) (38, 39) (42, 43)(45, 46);

2= (1,9)(2,10)(3,20) (4, 19)(5, 14) (6, 13)(7, 23) (8, 24) (11, 21)(12, 22)(15, 18)(16, 17)
(25,43)(26, 44)(29, 41)(30, 42) (31, 32) (33, 35)(34, 36) (37, 40)(38,39)(45 47);

w = (1,2)(3,8)(4,6)(5,7)(9, 10)(11, 16)(12, 14) (13, 15)(17, 30)(18, 35) (19, 34)(20, 26)
(21, 27)(22, 38)(23, 39) (24, 31)(25, 33)(28, 37)(29, 36)(32, 40)(42, 45)(43, 46).

5 Magma code for generating completions

To use this code in the program MAGMA, one just needs to input the degree of
the alternating group in question and it will output the generators z,y, 2z and
w.

G:=A1t(n);

if n mod 24 eq O then

m:=24;

l:=n-m;a,k:=IsDivisibleBy(1,24); seedx:=G!(1, 2)(3, 4)(5, 6)(7, 8)(9, 10)
(11, 12)(13, 14) (15, 16) (17, 18) (19, 20) (21, 22)(23, 24);seedy:=G!(1, 8)
(2, 3)4, 56, 7)(9, 16) (10, 11)(12, 13) (14, 15) (17, 24) (18, 19) (20, 21)
(22, 23); seedz:=G!(1, 10)(2, 9)(3, 20) (4, 19)(5, 13)(6, 14)(7, 23)(8, 24)
(11, 17) (12, 18) (15, 22) (16, 21); seedw:=G! (1, 10) (2, 22)(3, 23) (4, 14)
(5, 15)(6, 19)(7, 18)(8, 11)(9, 21)(12, 17)(13, 24) (16, 20);end if;

if n mod 24 eq 1 then

m:=25;

l:=n-m;a,k:=IsDivisibleBy(1,24); seedx:=G!(1, 2)(3, 4)(5, 6)(7, 8)(9, 10)
(11, 12)(13, 14)(15, 16) (17, 18) (19, 20);seedy:=G! (1, 8)(2, 3)(4, 5)(6, 7)
(10, 11)(14, 15)(17, 21)(18, 22) (19, 20) (23, 24); seedz:=G! (1, 12)(2, 11)
(3, 4)(5, 10)(6, 9) (13, 14) (17, 19)(18, 20) (21, 22)(24, 25); seedw:=G!

(1, 17)(2, 3)(4, 18)(5, 22)(8, 21) (10, 24)(11, 23) (13, 16)(14, 19) (15, 20)
;end if;

if n mod 24 eq 2 then

m:=26;
l:=n-m;a,k:=IsDivisibleBy(1,24); seedx:=G!(1,2)(3,4)(5,6)(7,8)(9,10)(11,12)
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(13,14) (15,16) (17,18) (19,20) (21,22) (23,24) ; seedy:=G!(1,8)(2,3) (4,5)(6,7)
(9,16)(10,11) (12,13) (14,15) (18,19) (21,25) (22,26) (23,24) ; seedz:=G!(1,8)
(2,7)(3,5)(4,6)(9,10) (11,18) (12,17) (15,20) (16,19) (21,24) (22,23) (25,26) ;
seedw:=G! (1,25) (4,26) (5,22) (6,7) (8,21) (9,14) (10,12) (11,13) (15,16) (17,20)
(18,23) (19,24) ;end if;

if n mod 24 eq 3 then

m:=27;

l:=n-m;a,k:=IsDivisibleBy(1,24); seedx:=G!(1, 2)(3, 4)(5, 6)(7, 8)(9, 10)
(11, 12)(13, 14)(15, 16) (17, 18)(19, 20); seedy:=G!(1, 8)(2, 3)(4, 5)(6, 7)
(10, 11)(14, 157, 21)(18, 22)(23, 24) (25, 26); seedz:=G!'(1, 13)(2, 14)
(3, 4)(5, 15)(6, 16)(9, 10) (17, 20)(18, 19) (23, 27)(25, 26); seedw:=G!

(1, 18)(2, 3)(4, 17)(5, 21)(8, 22)(10, 24) (11, 23)(14, 26) (15, 25) (19, 27);
end if;

if n mod 24 eq 4 then

m:=28;

l:=n-m;a,k:=IsDivisibleBy(1,24); seedx:=G!(1, 2)(3, 4)(5, 6)(7, 8)(9, 10)
(11, 12)(13, 14) (15, 16) (17, 18) (19, 20); seedy:=G!(1, 8)(2, 3)(4, 5)(6, 7)
(10, 11) (14, 15)(17, 21) (18, 22)(23, 24) (25, 26); seedz:=G!'(1, 2)(3, 10)
(4, 97, 12)(8, 11)(15, 16) (17, 19) (18, 20) (24, 28) (26, 27); seedw:=G!

(1, 18)(2, 3)(4, 17)(5, 21)(8, 22)(10, 23)(11, 24) (14, 25) (15, 26) (20, 27);
end if;

if n mod 24 eq 5 then

m:=29;

l:=n-m;a,k:=IsDivisibleBy(1,24); seedx:=G!(1, 2)(3, 4)(5, 6)(7, 8)(9, 10)
(11, 12)(13, 14)(15, 16) (17, 18)(19, 20) (21, 22)(23, 24); seedy:=G!(1, 8)
(2, 3)(4, 5)(6, 79, 16)(10, 11)(12, 13) (14, 15)(18, 19) (21, 25)(22, 26)
(27, 28); seedz:=G!(1, 18)(2, 17)(5, 20)(6, 19)(7, 8)(9, 15)(10, 16) (11, 14)
(12, 13)(21, 23)(22, 24)(28, 29); seedw:=G!(1, 2)(3, 8)(4, 6)(5, 7)(9, 22)
(10, 11>(12, 21)(13, 25) (16, 26) (18, 28) (19, 27)(24, 29);end if;

if n mod 24 eq 6 then

m:=30;

l:=n-m;a,k:=IsDivisibleBy(1,24); seedx:=G! (1, 2)(3, 4)(5, 6)(7, 8)(9, 10)
(11, 12)(15, 16) (17, 18)(19, 20) (21, 22)(23, 24) (25, 26) (27, 28) (29, 30);
seedy:=G' (1, 8)(2, 3)(4, 5)(6, 7)(9, 13)(10, 14) (15, 22) (16, 17)(18, 19)
(20, 21) (23, 30)(24, 25) (26, 27)(28, 29); seedz:=G!(1, 23)(2, 24)(3, 18)

(4, 17)(5, 28) (6, 27)(7, 21)(8, 22)(9, 11)(10, 12)(15, 30) (16, 29) (19, 25)
(20, 26); seedw:=G!(1, 13)(4, 14)(5, 10)(6, 7)(8, 9) (11, 12)(15, 16) (17, 22)
(18, 20) (19, 21) (23, 24)(25, 30) (26, 28)(27, 29); end if;

if n mod 24 eq 7 then

m:=31;
l:=n-m;a,k:=IsDivisibleBy(1,24); seedx:=G!(1, 2)(3, 4)(5, 6)(7, 8)(9, 10)

19



(11, 12)(13, 14)(15, 16) (17, 18) (19, 20) (21, 22)(23, 24) (25, 26) (27, 28);
seedy:=G! (1, 8)(2, 3)(4, 5)(6, 7)(9, 16)(10, 11)(12, 13)(14, 15)(17, 24)

(18, 19)(20, 21) (22, 23)(26, 27)(29, 30); seedz:=G!(3, 25)(4, 26) (5, 6)

(7, 27)(8, 28)(9, 15)(10, 16) (11, 14)(12, 13)(17, 20)(18, 19) (21, 23)(22, 24)
(30, 31); seedw:=G!(1, 24)(2, 13)(3, 12)(4, 20)(5, 21)(6, 16)(7, 9)(8, 17)
(10, 18) (11, 19)(14, 23) (15, 22) (26, 29)(27, 30); end if;

if n mod 24 eq 8 then

m:=32;

l:=n-m;a,k:=IsDivisibleBy(1,24); seedx:=G! (1, 2)(3, 4)(5, 6)(7, 8)(9, 10)
(11, 12) (13, 14) (15, 16) (17, 18) (19, 20) (21, 22) (23, 24) (25, 26) (27, 28

) (29, 30) (31, 32); seedy:=G!(1, 8)(2, 3)(4, 5)(6, 7)(9, 16) (10, 11)(12, 13)
(14, 15) (17, 24) (18, 19) (20, 21) (22, 23)(25, 32) (26, 27)(28, 29) (30, 31);
seedz:=G! (1, 9)(2, 10)(3, 20) (4, 19)(5, 14)(6, 13)(7, 23)(8, 24) (11, 21)
(12, 22) (15, 18) (16, 17) (25, 32) (26, 31)(27, 29) (28, 30); seedw:=G! (1, 2)
(3, 8)4, 6)(5, 7)(9, 22)(10, 27) (11, 26) (12, 18) (13, 19) (14, 30) (15, 31)
(16, 23) (17, 25)(20, 29) (21, 28)(24, 32);end if;

if n mod 24 eq 9 then

m:=33;

l:=n-m;a,k:=IsDivisibleBy(1,24); seedx:=G! (1, 2)(3, 4)(5, 6)(7, 8)(9, 10)
(11, 12) (13, 14) (15, 16) (17, 18) (19, 20) (21, 22) (23, 24) (25, 26) (27, 28);
seedy:=G! (1, 8)(2, 3)(4, 5)(6, 7)(9, 16)(10, 11)(12, 13)(14, 15)(18, 19)

(22, 23)(25, 29) (26, 30)(27, 28)(31, 32); seedz:=G!(1, 21)(2, 22)(3, 4)

(56, 23)(6, 24)(9, 18) (10, 17)(13, 20) (14, 19)(15, 16) (25, 28)(26, 27) (29, 30)
(32, 33); seedw:=G!(2, 29)(3, 25)(4, 5)(6, 26)(7, 30)(9, 11)(10, 16) (12, 15)
(13, 14) (17, 20) (18, 27) (19, 28) (22, 32)(23, 31);end if;

if n mod 24 eq 10 then

m:=34;

l:=n-m;a,k:=IsDivisibleBy(1,24); seedx:=G!(1, 2) (3, 4)(5, 6)(7, 8)(9, 10)
(11, 12)(13, 14) (15, 16) (17, 18) (19, 20) (21, 22) (23, 24) (25, 26) (27, 28)
(29, 30) (31, 32); seedy:=G!(1, 8)(2, 3)(4, 5)(6, 7)(9, 16)(10, 11)(12, 13)
(14, 15) (17, 24) (18, 19)(20, 21)(22, 23)(26, 27)(29, 33)(30, 34)(31, 32);
seedz:=G! (1, 3)(2, 4)(5, 8)(6, 7)(9, 26) (10, 25) (13, 28) (14, 27) (15, 16)
(17, 23) (18, 24) (19, 22) (20, 21)(29, 32)(30, 31)(33, 34); seedw:=G! (1, 14)
(2, 19)(3, 18)(4, 10)(5, 11)(6, 22)(7, 23)(8, 15)(9, 17)(12, 21)(13, 20)
(16, 24) (25, 28)(26, 31)(27, 32)(30, 34);end if;

if n mod 24 eq 11 then

m:=35;

l:=n-m;a,k:=IsDivisibleBy(1,24); seedx:=G!(1, 2) (3, 4)(5, 6)(7, 8)(9, 10)
(11, 12)(13, 14)(15, 16) (17, 18) (19, 20) (21, 22)(23, 24) (25, 26) (27, 28);
seedy:=G! (1, 8)(2, 3)(4, 5)(6, 7)(9, 16)(10, 11)(12, 13)(14, 15)(18, 19)
(22, 23) (25, 29) (26, 30) (31, 32)(33, 34); seedz:=G! (1, 23)(2, 24)(5, 21)

(6, 22)(7, 8)(9, 19)(10, 20) (13, 17)(14, 18) (15, 16) (25, 28) (26, 27) (31, 32)
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(34, 35); seedw:=G!(1, 2)(3, 8)(4, 6)(5, 7)(9, 16) (10, 25)(11, 29) (14, 30)
(15, 26) (18, 32)(19, 31)(22, 34)(23, 33)(27, 35);end if;

if n mod 24 eq 12 then

m:=36;

l:=n-m;a,k:=IsDivisibleBy(1,24); seedx:=G!(1, 2)(3, 4)(5, 6)(7, 8)(9, 10)
(11, 12)(13, 14)(15, 16) (17, 18)(19, 20) (21, 22)(23, 24) (25, 26)(27, 28);
seedy:=G! (1, 8)(2, 3)(4, 5)(6, 7)(9, 16) (10, 11)(12, 13) (14, 15)(18, 19)
(21, 29)(22, 30) (23, 31)(24, 32)(33, 34); seedz:=G!(1, 8)(2, 7)(3, 5)(4, 6)
(11, 20) (12, 19)(13, 14)(15, 18) (16, 17)(21, 26) (22, 25) (23, 27)(24, 28)
(33, 35); seedw:=G!(1, 32)(4, 31)(5, 23)(6, 7)(8, 24)(9, 30) (12, 29)(13, 21)
(14, 15) (16, 22)(18, 34)(19, 33)(26, 36) (27, 35);end if;

if n mod 24 eq 13 then

m:=37;

l:=n-m;a,k:=IsDivisibleBy(1,24); seedx:=G! (1, 2)(3, 4)(5, 6)(7, 8)(9, 10)
(11, 12)(13, 14) (15, 16) (17, 18) (19, 20) (21, 22) (23, 24) (25, 26) (27, 28)
(29, 30)(31, 32); seedy:=G!(1, 8)(2, 3)(4, 5)(6, 7)(9, 16)(10, 11) (12, 13)
(14, 15) (17, 24) (18, 19) (20, 21)(22, 23) (26, 27)(30, 31) (33, 34)(35, 36);
seedz:=G! (1, 26)(2, 25)(5, 28)(6, 27)(7, 8)(9, 12)(10, 11)(13, 15)(14, 16)
(17, 29) (18, 30) (19, 20) (21, 31) (22, 32)(33, 37)(35, 36); seedw:=G! (1, 14)
(2, 19)(3, 18)(4, 10)(5, 11)(6, 22)(7, 23)(8, 15)(9, 17) (12, 21)(13, 20)
(16, 24) (26, 33) (27, 34)(30, 35)(31, 36);end if;

if n mod 24 eq 14 then

m:=14;

l:=n-m;a,k:=IsDivisibleBy(1,24); seedx:=G! (1, 2)(3, 4)(5, 6)(7, 8)(9, 10)
(11, 12); seedy:=G!(1, 8)(2, 3)(4, 5)(6, 7)(9, 13)(10, 14); seedz:=G! (1, 8)
(2, 73, 54, 6)(9, 11)(10, 12); seedw:=G! (1, 13)(4, 14)(5, 10)(6, 7)(8, 9)
(11, 12);end if;

if n mod 24 eq 15 then

m:=15;

l:=n-m;a,k:=IsDivisibleBy(1,24); seedx:=G!(1, 2)(3, 4)(5, 6)(7, 8)(9, 10)
(11, 12); seedy:=G!(1, 8)(2, 3)(4, 5)(6, 7)(10, 11)(13, 14); seedz:=G!(1, 2)
(3, 10)(4, 9(7, 12)(8, 11)(14, 15); seedw:=G! (1, 6) (2, 4)(3, 5)(7, 8)

(10, 13)(11, 14);end if;

if n mod 24 eq 16 then

m:=40;

l:=n-m;a,k:=IsDivisibleBy(1,24); seedx:=G!(1, 2)(3, 4)(5, 6)(7, 8)(9, 10)
(11, 12)(13, 14)(15, 16) (17, 18) (19, 20) (21, 22) (23, 24) (25, 26) (27, 28)
(29, 30) (31, 32)(33, 34)(35, 36)(37, 38)(39, 40); seedy:=G!(1, 8)(2, 3)

(4, 5)(6, 7)(9, 16) (10, 11)(12, 13) (14, 15) (17, 24) (18, 19) (20, 21) (22, 23)
(25, 32) (26, 27) (28, 29) (30, 31) (33, 40) (34, 35)(36, 37)(38, 39); seedz:=G!
(1, 3)(2, 4)(5, 8B, 7)(9, 25)(10, 26) (11, 21)12, 22)(13, 30) (14, 29)
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(15, 18) (16, 17)(19, 28) (20, 27) (23, 31)(24, 32)(33, 35)(34, 36) (37, 40)
(38, 39); seedw:=G! (1, 38)(2, 19)(3, 18)(4, 34)(5, 35)(6, 22)(7, 23)(8, 39)
(9, 10) (11, 16) (12, 14) (13, 15) (17, 33)(20, 37) (21, 36) (24, 40) (25, 26)
(27, 32)(28, 30)(29, 31);end if;

if n mod 24 eq 17 then

m:=41;

l:=n-m;a,k:=IsDivisibleBy(1,24); seedx:=G!(1, 2)(3, 4)(5, 6)(7, 8)(9, 10)
(11, 12) (13, 14) (15, 16) (21, 22) (23, 24) (25, 26) (27, 28) (29, 30) (31, 32)
(33, 34)(35, 36); seedy:=G!(1, 8)(2, 3)(4, 5)(6, 7)(10, 11)(13, 17)(14, 18)
(19, 20) (21, 28) (22, 23)(24, 25)(26, 27)(30, 31)(33, 37)(34, 38)(39, 40);
seedz:=G! (1, 31)(2, 32)(5, 29)(6, 30)(7, 8)(9, 24)(10, 23)(11, 28)(12, 27)
(13, 15) (14, 16) (19, 20) (21, 22)(33, 35)(34, 36) (40, 41); seedw:=G! (1, 14)
(2, 3)4, 13)(5, 17)(8, 18) (10, 19) (11, 20) (15, 16) (21, 37) (24, 38) (25, 34)
(26, 27) (28, 33)(30, 39) (31, 40)(36, 41);end if;

if n mod 24 eq 18 then

m:=18;

l:=n-m;a,k:=IsDivisibleBy(1,24); seedx:=G!(1, 2)(3, 4)(5, 6)(7, 8)(9, 10)

(11, 12)(13, 14)(15, 16); seedy:=G!(1, 8)(2, 3) (4, 5)(6, 7)(10, 11)(13, 17)

(14, 18) (15, 16); seedz:=G!(1, 8)(2, 7)(3, 54, 6)(9, 10)(13, 15) (14, 16)

(17, 18); seedw:=G!(1, 17)(4, 18)(5, 14)(6, 7)(8, 13)(9, 12)(10, 15)(11, 16);end if;

if n mod 24 eq 19 then

m:=43;

l:=n-m;a,k:=IsDivisibleBy(1,24); seedx:=G! (1, 2)(3, 4)(5, 6)(7, 8)(9, 10)
(11, 12) (13, 14) (15, 16) (23, 24) (25, 26) (27, 28) (29, 30) (31, 32)(33, 34)
(35, 36) (37, 38); seedy:=G!(1, 8)(2, 3)(4, 5)(6, 7)(10, 11)(15, 17)(16, 18)
(19, 20) (23, 30)(24, 25) (26, 27)(28, 29) (32, 33)(35, 39) (36, 40) (41, 42);
seedz:=G! (1, 33)(2, 34) (5, 31)(6, 32)(7, 8)(9, 27)(10, 28) (11, 23)(12, 24)
(13, 16) (14, 15)(20, 21) (29, 30)(35, 37)(36, 38) (42, 43); seedw:=G! (2, 17)
(3, 15)(4, 5)(6, 16) (7, 18) (10, 19) (11, 20) (14, 22) (23, 39) (26, 40) (27, 36)
(28, 29) (30, 35)(32, 41)(33, 42)(38, 43);end if;

if n mod 24 eq 20 then

m:=20;

l:=n-m;a,k:=IsDivisibleBy(1,24); seedx:=G!(1, 2)(3, 4)(5, 6)(7, 8)(9, 10)

(11, 12)(13, 14)(15, 16); seedy:=G!(1, 8)(2, 3) (4, 5)(6, 7)(10, 11)(13, 17)

(14, 18)(19, 20); seedz:=G! (1, 2)(3, 10)(4, 9)(7, 12)(8, 11)(13, 15) (14, 16)

(19, 20); seedw:=G! (1, 14)(2, 3) (4, 13)(5, 17)(8, 18) (10, 19) (11, 20) (15, 16);end if;

if n mod 24 eq 21 then

m:=21;

l:=n-m;a,k:=IsDivisibleBy(1,24); seedx:=G!(1, 2)(3, 4)(5, 6)(7, 8)(9, 10)
(11, 12)(13, 14) (15, 16); seedy:=G!(1, 8)(2, 3)(4, 5)(6, 7)(10, 11)(15, 17)
(16, 18) (19, 20); seedz:=G! (1, 12)(2, 11)(3, 4)(5, 10)(6, 9) (13, 16) (14, 15)
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(19, 21); seedw:=G!(1, 3)(2, 8)(4, 7)(5, 6)(10, 20)(11, 19) (14, 21)(16, 18);end if;

if n mod 24 eq 22 then

m:=22;

l:=n-m;a,k:=IsDivisibleBy(1,24); seedx:=G! (1, 2)(3, 4)(5, 6)(7, 8)(9, 10)

(11, 12)(13, 14)(15, 16); seedy:=G!(1, 8)(2, 3) (4, 5) (6, 7)(10, 11)(13, 17)

(14, 18) (19, 20); seedz:=G! (1, 11)(2, 12)(5, 9)(6, 10)(7, 8) (13, 16) (14, 15)

(20, 21); seedw:=G! (1, 8)(2, 14)(3, 18)(6, 17)(7, 13)(10, 20) (11, 19)(15, 22);end if;

if n mod 24 eq 23 then

m:=47;

l:=n-m;a,k:=IsDivisibleBy(1,24); seedx:=G!(1, 2)(3, 4)(5, 6)(7, 8)(9, 10)
(11, 12)(13, 14)(15, 16) (17, 18) (19, 20) (21, 22) (23, 24) (25, 26) (27, 28)
(29, 30) (31, 32)(33, 34)(35, 36)(37, 38)(39, 40) (41, 42) (43, 44); seedy:=G!
(1, 8)(2, 3)4, 5)(6, 7)(9, 16) (10, 11)(12, 13) (14, 15) (17, 24) (18, 19)
(20, 21) (22, 23) (25, 32)(26, 27) (28, 29) (30, 31)(33, 40) (34, 35)(36, 37)
(38, 39) (42, 43) (45, 46); seedz:=G!(1, 9)(2, 10)(3, 20) 4, 19)(5, 14)(6, 13)
(7, 23)(8, 24) (11, 21)(12, 22)(15, 18) (16, 17) (25, 43) (26, 44) (29, 41)

(30, 42) (31, 32)(33, 35)(34, 36)(37, 40)(38, 39) (45, 47); seedw:=G! (1, 2)
(3, 8)4, 6)(5, 7)(9, 10) (11, 16) (12, 14)(13, 15)(17, 30)(18, 35) (19, 34)
(20, 26) (21, 27)(22, 38) (23, 39) (24, 31)(25, 33)(28, 37)(29, 36) (32, 40)
(42, 45) (43, 46);end if;

if 1 eq O then x:=seedx;y:=seedy;z:=seedz;w:=seedw;

else

seedz:=seedz"G! (1, n-23) (2, n-22) (3, n-21) (4, n-20) (5, n-19) (6, n-18) (7, n-17) (8, n-16);
x:=[1;y:=0;z:=0;w:=[1;

for i:=1 to k do x[i]:=G!(m+(i-1)#*24+1, m+(i-1)*24+2) (m+(i-1)*24+3, m+(i-1)*24+4)
(m+(i-1)*24+5, m+(i-1)*2446) (m+(i-1)*24+7, m+(i-1)*24+8) (m+(i-1)*24+9, m+(i-1)*24+10)
(m+(i-1)*24+11, m+(i-1)*24+12) (m+(i-1)*24+13, m+(i-1)*24+14)

(m+(i-1)*24+15, m+(i-1)*24+16) (m+(i-1)*24+17, m+(i-1)*24+18)

(m+(i-1)*24+19, m+(i-1)*24+20) (m+(i-1)*24+21, m+(i-1)*24+22)

(m+(i-1)*24+23, m+(i-1)*24+24);

y[i] :=G! (m+(i-1)*24+1, m+(i-1)*24+8) (m+(i-1)*24+2, m+(i-1)*24+3)

(m+(i-1)*24+4, m+(i-1)*24+45) (m+(i-1)*24+6, m+(i-1)*24+7) (m+(i-1)*24+9, m+(i-1)*24+16)
(m+(i-1)*24+10, m+(i-1)*24+11) (m+(i-1)*24+12, m+(i-1)*24+13) (m+(i-1)*24+14 ,m+(i-1)*24+15)
(m+(i-1)*24+17, m+(i-1)*24+24) (m+(i-1)*24+18, m+(i-1)*24+19) (m+(i-1)*24+20, m+(i-1)*24+21)
(m+(i-1)*24+22, m+(i-1)*24+23);

wlil :=G! (m+(i-1)*24+1, m+(i-1)*24+14) (m+(i-1)*24+2, m+(i-1)*24+19)

(m+(i-1)*24+3, m+(i-1)*24+18) (m+(i-1)*24+4, m+(i-1)*24+10) (m+(i-1)*24+5, m+(i-1)*24+11)
(m+(i-1)*24+6, m+(i-1)*24422) (m+(i-1)*24+7, m+(i-1)*24+23) (m+(i-1)*24+8, m+(i-1)*24+15)
(m+(i-1)*24+9, m+(i-1)*24+17) (m+(i-1)*24+12, m+(i-1)*24+21) (m+(i-1)*24+13, m+(i-1)*24+20)
(m+(i-1)*24+16, m+(i-1)*24+24) ;end for;

z[1]:=G!' (1, m+9) (2, m+10) (3, m+20) (4, m+19) (5, m+14) (6, m+13) (7, m+23) (8, m+24) (m+11, m+21)
(m+12, m+22) (m+15, m+18) (m+16, m+17);

for i:=2 to k do z[i]:=G! (m+(i-2)*24+1, m+(i-1)*24+9) (m+(i-2)*24+2, m+(i-1)*24+10)
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(m+(i-2) *24+3, m+(i-1)*24+20) (m+(i-2)*24+4, m+(i-1)*24+19) (m+(i-2)*24+5, m+(i-1)*24+14)
(m+(i-2)*24+6, m+(i-1)*24+13) (m+(i-2)*24+7, m+(i-1)*24+23) (m+(i-2)*24+8, m+(i-1)*24+24)
(m+(i-1)*24+11, m+(i-1)*24421) (m+(i-1)*24+12, m+(i-1)*24+22) (m+(i-1)*24+15, m+(i-1)*24+18)
(m+(i-1)*24+16, m+(i-1)*24+17); end for;

X:=Id(G) ;for i:=1 to k do X:=Xx*x[i];end for; Y:=Id(G);for i:=1 to k do Y:=Yxy[i];end for;
Z:=Id(G) ;for i:=1 to k do Z:=Z*z[i];end for; W:=Id(G);for i:=1 to k do W:=Wxw[i];end for;
x:=seedx*X;y:=seedy*Y;z:=seedz*Z;w:=seedw*W;end if;
P1:=sub<Glx,y,z>;P2:=sub<G|x,y,w>;B:=sub<G|x,y>;
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