SophiaBeads Datasets Project Documentation and Tutorials

Coban, Sophia Bethany

2015

MIMS EPrint: 2015.26

Manchester Institute for Mathematical Sciences
School of Mathematics
The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/

And by contacting: The MIMS Secretary
School of Mathematics
The University of Manchester
Manchester, M13 9PL, UK

ISSN 1749-9097
SophiaBeads Datasets Project Documentation and Tutorials

Sophia Bethany Coban
School of Mathematics, University of Manchester
e-mail: sophia.coban@manchester.ac.uk
website: www.maths.manchester.ac.uk/~scoban

April 1, 2015

The SophiaBeads Datasets \[4\] are real microCT datasets, acquired specifically for implementing, testing and comparing iterative reconstruction algorithms. The main motivations for the SophiaBeads Datasets Project are providing real datasets for researchers, and introducing a framework for designing experiments and choosing appropriate reconstruction methods via fair comparisons. This aspect of our work is studied in great detail in \[5, 6\]. The reason we use the SophiaBeads Datasets is because we know what the reconstructions should look like: We know the insides of the sample and its characteristics, so we can quantify the reconstructions and find out how close we are to an ‘exact solution’. The details of the sample and the experiment plan are listed in the next section.

As part of this project, we have also released SophiaBeads Datasets project codes \[3\]. Our aim with this report is to provide the reader with enough information to work with these codes so the reader can reconstruct the datasets. Additionally, we include a tutorial for quantifying the reconstructions so the readers are able to reproduce our results presented in \[5, 6\]. In \[3\] we document the project codes and explain the main script (sophiaBeads.m), followed by documentation for the quantification stage using Avizo. \[5.1\] and \[5.2\] are the detailed, step-by-step tutorials for the project codes and the Avizo work, where we reproduce our results for SOPHIABEADS_512_AVERAGED as an example. For accessing the contents of this project (datasets and the source codes) and guidance on referencing, we refer the reader to \[2\]. It is also recommended to read the additional notes and the licenses under which the project is distributed, which are explained in \[6\].

1 Sample Information and Experiment Plan

For the SophiaBeads experiments, we have set up a basic sample with specific measurements so we are able to quantify the reconstructions. The sample is a plastic tube with a diameter of 25mm, filled with uniform soda-lime glass (SiO\(_2\) – Na\(_2\)O) beads of diameters 2.5 mm (with standard deviation 0.1 mm). The sample has been scanned in the same conditions for each dataset, where the number of projections is halved after each batch scan (starting from 2048, down to 64 projections, see Table \[1\] for more information). This follows the set up explained
in [5, 6]. This design allows us to understand the effects of fewer projections, and develop algorithms that deliver quality results when the information content is low (e.g. patient scans with lower dose or rapid data acquisitions for 3D+time experiments).

<table>
<thead>
<tr>
<th>Number of Projections</th>
<th>Number of Frames (scans per batch)</th>
<th>Acquisition Time (per frame)</th>
<th>Size of Dataset</th>
</tr>
</thead>
<tbody>
<tr>
<td>2048</td>
<td>1</td>
<td>24 mins and 10 secs</td>
<td>15.7 GB</td>
</tr>
<tr>
<td>1024</td>
<td>2</td>
<td>12 mins and 5 secs</td>
<td>7.8 GB</td>
</tr>
<tr>
<td>512</td>
<td>4</td>
<td>6 mins and 3 secs</td>
<td>3.9 GB</td>
</tr>
<tr>
<td>256</td>
<td>8</td>
<td>3 mins and 2 secs</td>
<td>1.9 GB</td>
</tr>
<tr>
<td>128</td>
<td>16</td>
<td>1 min and 30 secs</td>
<td>953.6 MB</td>
</tr>
<tr>
<td>64</td>
<td>32</td>
<td>45 secs</td>
<td>474.9 MB</td>
</tr>
</tbody>
</table>

Table 1: The experiment plan and information about the SophiaBeads Datasets.

The datasets are acquired using the Nikon Custom Bay X-ray CT machine located in the Manchester X-ray Imaging Facility. The reader can visit [8] to find out more about this equipment.

2 Download and Referencing Guide

The SophiaBeads Datasets are accessible via Zenodo, which is an open digital repository aimed at preserving and sharing academic/scientific results (these mainly include datasets or software used in a particular study, or supporting texts for a thesis). The reader can download each dataset as a zipped folder from [4]. When extracting the zipped folders, make a note of the path the folder is extracted to (this becomes important later).

Zenodo provides exportation of various citation formats. To cite the datasets, the reader may export the BibTex record by clicking on the link on the right hand side of the SophiaBeads Datasets Zenodo page. It is not necessary to refer to each dataset separately; citing (using the DOI) for any of the datasets once is sufficient.

The SophiaBeads Datasets project codes are released on GitHub [9] and published on Zenodo [3]. The project codes can be downloaded by visiting either the GitHub repository page (download as zip or tar.gz files), or the Zenodo page (available only as a zip file). By default, Zenodo takes an archive of the SophiaBeads GitHub repository every time there is a new release. However, we recommend direct downloads from the GitHub repository for the most recent changes applied in-between major releases. The reader will still need to export the BibTex record from the Zenodo page (to get the complete citation including the correct DOI).

The reader will need to download the source project codes in order to work with SophiaBeads Datasets. However, we ask that the reader cites both the datasets and the project codes separately, using the relevant DOI.
3 SophiaBeads Datasets Project Codes

As we mentioned earlier, to be able to work with the SophiaBeads Datasets, we have also released project codes for the pre-reconstruction stage. In this section, we introduce these codes, and give detailed descriptions of each script or function. The main script in particular, named sophiaBeads.m, contains the relevant functions for all the stages up to (and excluding) the quantification. A visual description of this script is given in the figure below, followed by a list of all scripts and functions, and their definitions.

In this report, we assume the reader has some experience using MATLAB, including knowing the difference between a regular script and a function. Nevertheless, we adapt a certain behaviour in the report to distinguish between the two: If the name of a script is mentioned, the name will always be followed by the .m extension, e.g. scriptname.m; whereas a function will just be functionname.

Figure 1: This is the process tree for the script sophiaBeads.m.
Script/Function Description

<table>
<thead>
<tr>
<th>Script/Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main</td>
<td></td>
</tr>
<tr>
<td>sophiaBeads.m</td>
<td>A script with all the commands to carry out the reconstructions. We will be going through this script step by step in the tutorial, in §5.1.</td>
</tr>
<tr>
<td>Pre-reconstruction</td>
<td></td>
</tr>
<tr>
<td>pre_recon</td>
<td>This function is a collection of commands that return the outputs data (the dataset stored in MATLAB) and geom (the cone beam geometry parameters required for forward and back projectors).</td>
</tr>
<tr>
<td>load_nikon</td>
<td>Loads the data taken by Nikon XTek CT machine.</td>
</tr>
<tr>
<td>cutDown_data</td>
<td>Cuts the dataset down from 2000 × 2000 × 2000 to 1564 × 1564 × 2000. This is the size of the images during the data acquisition for all the SophiaBeads experiments.</td>
</tr>
<tr>
<td>centre_geom and find_centre.m</td>
<td>Functions to find the centre of rotation and apply this as a correction to data and geom before the reconstruction stage. See [7] for the correction algorithm implemented.</td>
</tr>
<tr>
<td>C codes</td>
<td></td>
</tr>
<tr>
<td>CBproject_c.c</td>
<td>These are essentially the forward and back projectors provided by our colleagues W. Thompson [12] and D. Szotten [11]. These codes adapt Jacob’s ray tracing algorithm as explained in [10].</td>
</tr>
<tr>
<td>CBbackproject_c.c</td>
<td></td>
</tr>
<tr>
<td>project_single.c</td>
<td></td>
</tr>
<tr>
<td>backproject_single.c</td>
<td></td>
</tr>
<tr>
<td>jacobs_rays.h</td>
<td></td>
</tr>
<tr>
<td>Interface for the mex files</td>
<td>Interfaces written to connect a reconstruction script with the forward and back projectors.</td>
</tr>
<tr>
<td>CBproject, CBbackproject</td>
<td></td>
</tr>
<tr>
<td>mex files</td>
<td></td>
</tr>
<tr>
<td>CBproject_c.mexa64</td>
<td>These are the outputs of setup.m, and are used for calculating Ax (forward projector) or ATb (back projector).</td>
</tr>
<tr>
<td>CBbackproject_c.mexa64</td>
<td></td>
</tr>
<tr>
<td>CBproject_c.mexmaci64</td>
<td></td>
</tr>
<tr>
<td>CBbackproject_c.mexmaci64</td>
<td></td>
</tr>
<tr>
<td>CBproject_c.mexw64</td>
<td></td>
</tr>
<tr>
<td>CBbackproject_c.mexw64</td>
<td></td>
</tr>
</tbody>
</table>
Templates

setup.m This script outputs the mex files for forward and back projectors. This and the next function are provided to us by our colleague N. Wadeson [13].

cgls_XTek An example reconstruction script included as a template for the reader. The CGLS algorithm is given in [2].

Reading/Writing

read_vol.m
write_vol.m
write_tiff.m

Writing and reading reconstructed volumes. We include write_tiff.m as an extra file, which we do not use in the tutorial.

The reader is reminded that using the doc or the help command in MATLAB for a particular script/function will output more details. For example:

>> help write_tiff

will output

write_tiff
Function to write the reconstructed volume as a set of tiff images. Each tiff image is a slice in the z-direction.

INPUT:
vol: Reconstructed volume.
pathname: Name of the folder where the volume is to be stored.
filename: Name of file to store the volume as.
experiment_name: Name of the experiment for reconstructing this volume. This is to help distinguish between volumes, avoids overwriting. NOTE: This can be an empty string.
voxels: Size of the volume.
type: 'uint8' or 'uint16'. NOTE: This has to be a string.

DEFAULT VALUES:
experiment_name = ''; (empty string)
voxels = [1564 1564 2000]; (2000 slices)
type = 'uint16';

OUTPUT:
foldername: Name of folder the tiff files are saved in.

Copyright (c) 2015 Sophia Bethany Coban
Code is available via the SophiaBeads Datasets project.
University of Manchester.
This is useful for seeing the inputs required by the function and the default values set in the codes.

As mentioned earlier, we have collected all the commands in one script for an easy and quick run (sophiaBeads.m) but the readers are encouraged to experiment by running these functions individually.

4 The Quantification Stage

The quantification of the reconstructed results was done using a commercial software, named Avizo. This application is developed by FEI Visualization Sciences Group, and is popularly used in materials science for interactive data visualization and analysis. Avizo is convenient for working on the SophiaBeads Datasets as it includes a list of measures we can apply to quantify our results. Here, we give a list of actions to be used in the tutorial and their descriptions; and a list of measures that can be used to quantify our results. The results presented in [5] are obtained using Avizo Fire 8, but the tutorial is valid for Avizo Fire 7 and Avizo 9. The workflow we used is outlined in Figure 2. In the quantification tutorial, we assume the reader has no experience using Avizo.

Figure 2: This is the Avizo workflow used in the quantification tutorial. This particular version is Avizo 9. However, the tutorial in [5,2] is valid for Avizo Fire 7 and 8.

The quantification tutorial is essentially the Watershed Tutorial given in [1, pages 271–293],
modified specifically for the SophiaBeads Datasets. We note here that we do not apply any noise reduction or ‘filling in the holes’ during the segmentation stages, as this would influence the analysis of the reconstructed volume. Below is the list of actions we apply, and their descriptions.

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interactive Thresholding</td>
<td>Creates a binary image using a defined thresholding range of intensity values. The thresholding range we used for all the SophiaBeads reconstructed volumes is (0.11,0.35). This was enough to separate the exterior and the beads, even for SOPHIABEADS_64_AVERAGED.</td>
</tr>
<tr>
<td>Chamfer Distance Map</td>
<td>Distance maps are applied to binary images (.thresholded). They output grey level images where each intensity value represents the minimal distance from the object boundary, in voxels. We use the Chamfer Distance Map, which is a discrete map. This cuts down the computation time whilst giving reliable results for this type of sample.</td>
</tr>
<tr>
<td>H-Maxima</td>
<td>Takes the distance map (.distmap) as an input, calculates the regional maxima, and outputs the most inner regions within the objects. This is necessary for labeling individual objects in the image.</td>
</tr>
<tr>
<td>Labeling</td>
<td>This is used to index all of the disconnected/segmented objects within the image. We repeat this action twice during the quantification stage: First time is to distinguish between the exterior and the objects of interest (our reconstructed volume). Second is to label the separated objects (as individual beads).</td>
</tr>
<tr>
<td>NOT</td>
<td>Inverts a grey level image (in our case, the input is .distmap).</td>
</tr>
<tr>
<td>Marker-Based Watershed</td>
<td>Watershed is the main tool used in the quantification tutorial. The algorithm automatically separates the beads, which are then labeled as individual objects. We use the Marker-Based Watershed algorithm in the tutorials.</td>
</tr>
<tr>
<td>AND NOT</td>
<td>This takes two inputs: .thresholded and .watershed, and outputs an image where the separation lines are subtracted from the binary image.</td>
</tr>
<tr>
<td>Filter by Measure</td>
<td>Measures individual objects and ranks them according to the chosen measure (see below for the list of measures we believe are suitable for the datasets).</td>
</tr>
<tr>
<td>Generate Surface</td>
<td>Generates a 3D surface from a label image (the output for this is .surf).</td>
</tr>
</tbody>
</table>
Surface View Allows us to visualize the .surf output on the screen.

Ortho Slice Views the current image as a slice (the horizontal, xy, slice by default, but the user can change this to view vertical slices, xz or yz).

Volumized Rendering Renders a 3D visualization of the selected volume.

Below is the list of available measures in Avizo Fire, which we can use to quantify the quality of our reconstructed results.

<table>
<thead>
<tr>
<th>Measure</th>
<th>Description</th>
<th>SophiaBeads Expected Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHAPE_VA3D</td>
<td>Outputs a shape factor depending on how spherical the object is. For a perfect sphere, the answer is 1.</td>
<td>SophiaBeads are not all perfect spheres (there is a fraction of the beads that are egg-shaped, which would influence the outcome) so we accept a range between 1 to 1.5 as the “perfect” spherical solution.</td>
</tr>
<tr>
<td>EQDIAMETER</td>
<td>Inspects the diametres of the spherical objects.</td>
<td>This should output the diametres of the beads, which (in the perfect case) would be 2.5 mm.</td>
</tr>
<tr>
<td>VOLUME3D</td>
<td>Calculates the spherical volume the objects; uses $4\pi r^3/3$ to calculate the volume of a sphere.</td>
<td>We expect the answer for a “perfect” reconstruction of a sphere to be $8.18 \text{ mm}^3 \ (or \ 8.18 \times 10^9 \mu\text{m}^3)$, with a standard deviation of $1.02 \text{ mm} \ (or \ 1.02 \times 10^9 \mu\text{m}^3)$.</td>
</tr>
<tr>
<td>AREA3D</td>
<td>Outputs the surface area of a 3D object.</td>
<td>The surface area of a “perfect bead” in Sophiabeads experiments should be $19.63 \text{ mm}^2 \ (or \ 1.9 \times 10^7 \mu\text{m}^2)$, with a standard deviation of $3.27 \text{ mm} \ (or \ 0.33 \times 10^7 \mu\text{m})$.</td>
</tr>
<tr>
<td>SYMMETRY</td>
<td>Outputs a factor on how symmetric the objects are.</td>
<td>This should be 1 as we expect the reconstructed beads to be symmetric (egg-shaped beads would also influence this analysis but not by a huge factor, similar to SHAPE_VA3D).</td>
</tr>
<tr>
<td>ECCENTRICITY</td>
<td>Similar to the measure above, outputs a factor on how eccentric the shapes of the objects are.</td>
<td>A very low number would mean the shape is not at all eccentric, which is what we would expect for the beads.</td>
</tr>
</tbody>
</table>
There are more ideas listed for quantifying the SophiaBeads datasets in [5, 6], which are not available as measures in Avizo. The readers are welcomed to use these but are also invited to consider new ideas for quantifying own reconstructions.

5 Reconstruction and Quantification Tutorials

This section aids the readers through the process of reproducing our results, as presented in [5], and more importantly helps the reader understand the exact steps taken in our codes. In this section, we will be repeating our reconstruction experiments for the SophiaBeads_512_AVERAGED dataset, and present the messages, results, and the Avizo work involved.

Previously, we have mentioned a main script, where all the relevant commands are used to prepare the dataset for reconstructing and then saving in a format appropriate for Avizo (see Figure 1 for the process tree of sophiaBeads.m). We will now go through each command, but also print the outputs of sophiaBeads.m.

5.1 Reconstruction Using the Project Codes

The scripts are written in a way that everything up to the Avizo stage are automated. However, there are some variables the user will have to manually enter in sophiaBeads.m before running the script. These are:

- **pathname**: Declare the path to folder where the dataset is saved.
- **filename**: Declare the name of the dataset. For these runs, this is declared as SophiaBeads_512_AVERAGED.
- **geom_type**: Declare whether to perform a 2D or a 3D reconstruction. Please note that the variable is case-sensitive, and will not work if, e.g., the variable is declared as geom_type = ‘2d’.
- **experiment_name**: This is for naming purposes only. The reconstructed volume will take the name <filename>_<experiment_name>.vol. This variable will help distinguish between the reconstruction experiments, and avoid overwriting a previous result.
- **slices**: This variable is only valid if geom_type = ‘3D’, and will be ignored otherwise. This is to allow the reader to work on a certain number of slices instead of reconstructing the full volume (2000 slices), essentially cutting down the computation time. For our results and quantification in [5], 200 slices were adequate.
- **iterations**: This is an optional variable, and only used in the code we have written for CGLS. When implementing own reconstruction method, reader is free to replace/remove this variable as they see fit.

For this particular run, the variables above are declared as the following:

```matlab
pathname = '/media/SophiaBeads_Datasets/SophiaBeads_512_aaveraged/';
filename = 'SophiaBeads_512_averaged';
```
geom_type = '3D';
experiment_name = 'CGLS_200slices';
slices = 200;
iterations = 12;

Running `sophiaBeads.m` will trigger the process outlined in Figure 1. We will now go through this by explaining the commands step by step. The first on our list is `setup`. Note that this is commented out and is only intended to be a template for those wishing to test projector/back projector techniques. If this line is uncommented, the program will output the following:

```matlab
setup;

>> Creating the folder mex/...
>> Building with ‘gcc’.
>> MEX completed successfully.
>> Building with ‘gcc’.
>> MEX completed successfully.
```

Take caution as this will overwrite the existing projector and back projector mex files. Please read §6 for more information.

Pre–Reconstruction

Next is a function that runs scripts only for the pre-reconstruction phase. This is where the data gets loaded onto MATLAB, the cone beam geometry is set up, and relevant corrections are applied. Below is the list of functions in `pre_recon.m`, followed by how the function is called within `sophiaBeads.m` and their outputs in the command window. Please refer to §3 for the descriptions of these functions.

```matlab
[data,geom] = pre_recon(pathname, filename, geom_type, slices);

>> Loading the SophiaBeads dataset (3D)...
>> Dataset is cut down to 1564 x 1564 x 200...
>> Applying centre of rotation correction...
>> Pre-reconstruction stage is complete!
```

Reconstruction and Saving

We are now ready to reconstruct the SophiaBeads dataset. To encourage readers to implement their own techniques, we include a short CGLS script in the project codes release, named `cglstek`. The readers are free to use this code to obtain the SophiaBeads dataset result in these tutorials, or as a template to implement own techniques. The CGLS algorithm is implemented as described in §2, and run for 12 iterations (this was picked by trial and error, as explained in §5). The program command and the outputs are

```matlab
xcgls = cglstek(data, geom, iterations);
```
Reconstructing the SophiaBeads dataset (3D)...
Iteration 1 -- Elapsed time is ---- seconds.
...
Reconstruction is complete!

The code then plots the reconstructed image (for 3D, this is just the central slice).

Figure 3: This is the central slice of the reconstructed volume.

The SophiaBeads_512_averaged dataset is now reconstructed. The volume is saved as single floats, using the script `write_vol.m`:

```matlab
volname = write_vol(xcglsls, pathname, filename, experiment_name, ‘single’);
```

which outputs

```matlab
>> The reconstructed volume is written in folder
    /media/SophiaBeads_Datasets/SophiaBeads_512_averaged/.
>> The volume is saved as SophiaBeads_512_averaged_CGLS_200slices.vol.
```

The reconstructed result for this dataset is now ready to be exported to Avizo for the quantification stage.

5.2 Quantification using Avizo

For this section of the tutorials, we have divided the content into three sections:

I. *Loading the Dataset,*

II. *Image Segmentation and Separation,* and

III. *Quantification and Saving Results.*
I. Loading the Dataset

Start the Avizo Fire application and, from the top of the page, select **File → Open Data** → Navigate to the folder where `write_vol.m` has saved the dataset. The window in Figure 4(a) will appear. Select “**Read complete volume into memory**”, and press **OK**. The reader will then be prompted to pick the file format. Pick “**Raw Data**” from the list (as highlighted in Figure 4(b)) and press **OK**.

(a) Data load warning window. (b) Data format selection window. (c) Default data parameters. (d) Updated data parameters. (e) The setup of Avizo.

Figure 4: Data loading in Avizo.

The reader will then be asked to enter a set of dataset parameters (see Figure 4(c) for the default values, and Figure 4(d) for the changes applied for the SophiaBeads Datasets). Apply the changes below:

- **Data type:** Select **32-bit float** from the drop-down menu.
- **Dimensions:** This should be the size of the reconstructed volume, which in this case is $1564 \times 1564 \times 200$.

• **Voxel size**: This should be as defined in the .xtekct files, which (for all SophiaBeads Datasets) is \(16, 16, 16\)\(\mu m\) (this can be left as \(1, 1, 1\) but in doing so, the results obtained during the analysis stage would have to be scaled).

Note that after these changes are applied, the **Header** should read 0 (zero). After loading the dataset, one can attach **Ortho Slices** to view the horizontal (default orientation) and vertical slices (choose \(xz\) and \(yz\) as the **Orientation** option in the **Properties** window below the **Project View**, on the left hand size of the application). The current setup should now match the one given in Figure 4(e).

II. Image Segmentation and Separation

The first step is to get the binary image (this is to separate the objects from the background). For this, we apply the action **Interactive Thresholding**: Right click on the dataset (.vol) → **Image Segmentation** → **Binarization** → **Interactive Thresholding** → Create. See Figure 5(a) as a reference. A red (action) box will appear below .vol with options to modify. The only modification needed here is the **Intensity Range**, which should be from 0.11 to 0.35 (in fact, anything above 0.35 will not effect the analysis results). **This range must be the same for all the reconstructed results of SophiaBeads Datasets**. Figures below are of the option window and an ortho slice attached to the output of this action.

Figure 5: **Interactive Thresholding** steps for a binary image of the volume.
Next, we apply the **Chamfer Distance Map** to the binary image. To do this, right click on `.thresholded` → *Image Processing* → *Distance Maps* → *Chamfer Distance Map* → *Create* (Figure 6(a)). Note that in the *Properties* window, the reader must choose 3D for the *Interpretation* option and select *Apply*. Attaching an ortho slice to the output gives Figure 6(b). This is followed by the **H-Maxima** action: Right click on the Distance Map output, `.distmap` → *Image Processing* → *Morphological* → *H-Maxima* → *Create*. No changes needed to make in the properties, so click *Apply*. It might take a few minutes to complete the iterations. Finally, we need to attach *Labeling* to the *H-Maxima* output. As before, right click on `.hmaxima` → *Image Segmentation* → *Labeling* → *Create* and then *Apply.*
Figure 6: Steps for detecting individual objects.

Now, we must go back to the distance map and invert it: Right click .distmap → Compute → Logical Operations → NOT → Create. Nothing to change in the Properties window so click Apply. We are now ready to apply the Watershed algorithm on the inverted image: Right click on the output .not → Image Segmentation → Marker-Based Watershed → Create. On the Properties window, for the Input Label Image, select the .labels output. See Figure 7(c) for the Properties window changes, and Figures 7(d) and 7(e) for the results of .not and .watershed.

(a) Choosing the NOT option.

(b) Choosing the Watershed algorithm.

(c) Watershed options: Choose Input Label Image.
Finally, subtract the separation lines (.watershed) from the labeled binary image (.thresholded) by right-clicking on .thresholded → Compute → Logical Operations → AND NOT Image → Create. On the Properties window, choose .watershed output from the drop-down menu for the Input Image 2 (see Figure 7(b)). Clicking Apply produces the output .sub. Repeat the steps for the Labeling process to index the separated objects. We can now quantify these objects (reconstructions of the individual beads) using the measures listed in §4.
III. Quantification and Saving Results

We now have our reconstructed beads separated and individually labeled. The second label lists that there are 4329 objects (this is visible in Figure 9(a)). However, this does not mean that there are exactly 4329 beads: this number takes into account any objects of any size within the image. These include any beads that are not fully in the 200 slices window, which may or may not have been separated from other beads (see Figures 8(c) and 8(d) for the Surface View of the reconstructed volume). To quantify our reconstruction appropriately, we need to filter out the objects that are too small to be included in the analysis. This is done by Filter by Measure: Right click on the second .labels → Measure and Analyze →
Individual Measures → Filter by Measure → Create. We believe the most appropriate measure for filtering out is the VOLUME3D option, which sorts the objects by the descending order of their volume. See Figure 9(b) for the modified properties. Note that we pick the first 50 objects that have the highest volume. These are saved in the third output of .labels.

![Images of Filter by Measure, Properties window, and Volumized Rendering of .labels.]

(a) Choosing Filter by Measure.
(b) Properties window.
(c) Volumized Rendering of the resulting .labels.

Figure 9: Filtering out the objects that are small in volume.

The next stage involves some manual work. The third output of .labels contains 50 objects and these are sorted by the magnitude of their volumes. What we are not taking into account here is that some objects are not separated properly, or are mostly within the 200 slices range so they are able to go through the filter (as seen in Figure 9(c)). We need to pick out the beads within these 50 objects that are separated and are fully within the window. To do this, we have to use the Segmentation Editor where all objects are listed as individual materials. In Figure 10(a), we see the first 5 objects (viewed by toggling the 3D option). From this we deduce that Material 3 is not separated properly, and Materials 1, 2 and 4 are not fully in the window. For the quantification, we can only accept Material 5 so we delete the first four materials off the list using the Delete key (they are simply added to the exterior and are no longer part of the third .labels output). Using this method, we inspect all the materials on the list. Our target is to keep around 10 materials for the Label Analysis stage (this can be challenging as the quality of reconstructed volume decreases, in which case we would go back to Filter by Measure, and increase the Number Of Objects option). See Figure 10(c).
for another example, and Figure 10(d) for the resulting 10 materials we accept for the next stage. Please note that the colours may be different but by following the exact steps, the reader should be able to get the beads in the same locations.

(a) The first 5 materials on the list: Materials 1 to 4 are not suitable.

(b) Segmentation Editor window.

(c) A second example of beads: Materials 5 and 9 are acceptable for the analysis.

(d) Final look of the appropriate beads in the Segmentation Editor.

Figure 10: Manually choosing beads that are separated and fully within the 200 slices.

The final stage is running the Label Analysis, which concludes the quantification. To perform the Label Analysis, right click on the third .labels output → Measure and Analyze →
Individual Measures → Label Analysis → Create (Figure 11(a)). In the Properties window, choose .vol for the Intensity Image. For convenience, we created a measure group for the SophiaBeads experiments. This is done by clicking next to Measures. This prompts the window shown in Figure 11(c) To create a new measure group, press on top of the page, next to the “Choose a measure group option”, and enter a name for a new group. Then, browse the “Native measures” section and double click on the preferred measures to include in the group. The measures picked should appear on the right, under the section “Measures selected in the group”. Press OK when finished, and make sure the newly created measure group is chosen as the Measures option in the Properties window (compare with Figure 11(b)). Clicking Apply will prompt Avizo to measure the remaining objects in .labels, and output results in a table for all the measures in the group. The resulting table for our run is given in Figure 11(d). By inspecting these results, we can quantify how close the reconstructed volume is to a perfect solution, and thus compare with different methods applied to the same volume (see e.g. [6, Fig. 7]).

Figure 11: Final steps of quantifying the quality of a reconstructed volume using Avizo.

It is possible to visualize the results in 3D by applying Volumized Rendering to the final .labels output, or by applying Generate Surface to the same output, followed by Surface View (the outputs will be similar to Figures 9(c) or 8(d)). The tree flow in the Project
View window should match the one given in Figure 2. The reader can save the results on the analysis table in a csv or xml format.

6 Additional Notes and Licensing Information

Due to the nature of the sample, the datasets are also suitable for developing and/or testing

- segmentation methods,
- image or data correction techniques,
- forward and back project implementations, and
- benchmarking own codes or method.

We include mex files suitable for Windows, Mac OSX and Linux operating systems. We also include the Linux template of the script we have written to create these mex files (`setup.m`). Please note that as this is a template script, it may not work with Windows, and may need some tweaking to work for Mac OSX systems (this depends on the installed versions of MATLAB and Xcode).

If the reader runs `setup.m`, the existing projector and back projector mex files will be overwritten. To avoid this, modify the names after the `-output` option in the `setup.m`:

- Line 22: `-output mex/CBbackproject_c`
- Line 23: `-output mex/CBproject_c`

Please note that in doing so, the reader will also have to modify the interface scripts for the mex files (`CBproject.m` and `CBbackproject.m`) to update the lines with the new projector and back projector mex file names.

Finally, the project codes are tested using the following MATLAB versions:

- **Scientific Linux 6, Ubuntu 12.04 and 14.04**: MATLAB R2010a, R2013a, 2014b.
- **Mac OSX 10.9 (Mavericks) and 10.10 (Yosemite)**: MATLAB R2009b, R2013a, R2014b.
- **Windows 7 and 8.1**: MATLAB R2012b, R2013a, R2014a, R2014b.

Licensing Information

The SophiaBeads Datasets are distributed under the [Creative Commons Attribution Share-Alike license](https://creativecommons.org/licenses/). The project codes are distributed under the [GPL v2 and MIT licenses](http://choosealicense.com). Please read the documents LICENSE and LICENSE2 to learn more about using the project codes. The reader may also find it useful to visit www.creativecommons.org/licenses/ and www.choosealicense.com to learn about these licenses.
Acknowledgments

This project is funded by the School of Mathematics, EPSRC CCPi (EP/J010456/1) and BP through the ICAM framework.

The author is grateful to the MXIF staff Dr. Sam McDonald and Dr. Julia Behnsen for their help with acquiring the datasets and with visualizing the results. The author is also grateful to the PhD supervisors Prof. Bill Lionheart and Prof. Phil Withers for their helpful comments and guidance.

References

