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Abstract—This paper introduces EvolvingGraphs, a Ju-
lia software package for the creation, manipulation, and
study of dynamic networks. We describe the underlying
model of EvolvingGraphs and discuss the implementations
of components and centrality in the case of dynamic
networks. We make particular use of the parameterizable
type system and multiple dispatch in Julia. Users can work
on a variety of graph types with nodes and timestamps of
any Julia type.

I. INTRODUCTION

We describe EvolvingGraphs1, a Julia software pack-
age for analyzing dynamic networks. A dynamic network
is network in which the interactions among a set of
elements change over time. Examples of dynamic net-
works include a network of mobile phone users inter-
acting through messaging and the spread of diseases in
communities. It is natural to model a dynamic network
by an evolving graph G, defined as a sequence of static
graphs {G1, G2, . . . , Gn}, where Gi = (V (i), E(i)) is
a snapshot of the evolving graph G at timestamp i.
For example, Figure 1 shows an evolving graph with 3
timestamps t1, t2, t3, where a green shaded circle denotes
an active node (see Section II) and a pink circle denotes
an inactive node.
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Fig. 1: An evolving graph with 3 timestamps.

Julia [1] is a high-level, high-performance dynamic
programming language for technical computing. It takes
advantage of LLVM-based [2] just-in-time (JIT) compi-
lation to approach the performance of statically-complied

1http://evolvinggraphsjl.readthedocs.org/

languages like C, yet allows programmers to write clear,
high-level code that closely resembles mathematical for-
mulas. EvolvingGraphs makes particular use of Julia’s
multiple dispatch combined with its type system. Since
user defined types are first class in Julia, it makes sense
to implement new graph types to design user-friendly
interfaces.

EvolvingGraphs is designed to have a similar inter-
face to standard static graph packages such as Python’s
NetworkX2 or Julia’s Graphs 3. To get a taste of Evolv-
ingGraphs, we may consider representing the evolving
graph of Figure 1:

> g = evolving_graph(Char, String)
> add_edge!(g, ’A’, ’B’, "t1")
> add_edge!(g, ’A’, ’C’, "t2")
> add_edge!(g, ’B’, ’C’, "t3")
> nodes(g)
3-element Array{Char,1}:
’A’
’B’
’C’
> edges(g)
3-element Array{TimeEdge{V,T},1}:
TimeEdge(A->B) at time t1
TimeEdge(A->C) at time t2
TimeEdge(B->C) at time t3

where the arguments of evolving_graph indicate the
node type and timestamp type respectively.

This paper is organized as follows. In Section II,
we introduce a node-active model for evolving graphs,
including the definition of temporal path and temporal
distance. In Section III, we consider the type system of
EvolvingGraphs and discuss ways to represent evolving
graphs. The concept of connected components in evolv-
ing graphs is introduced in Section IV. A breadth first
search (BFS) based implementation for finding weakly
connected components is also discussed. We consider a
generalization of the Katz centrality in Section V and
provide examples of usage in Section VI.

2https://networkx.github.io/
3http://graphsjl-docs.readthedocs.org/
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II. NODE-ACTIVE MODEL

We assume G = {G1, G2, . . . , Gn} is a directed
evolving graph, where each edge e is of the form
(vi, vj , tk), indicating a link from node vi to node vj
at timestamp tk. Unlike in most existing models [3]
[4] [5] [6], in which the node set is assumed to be
fixed throughout time, in our model (a) nodes are time-
dependent and are changing over time; (b) nodes are
present only if they are connected by edges. We say a
node v at timestamp t, denoted by (v, t), is active if v
is connected to at least one other node at timestamp t.
For example, in Figure 1 the following nodes are ac-
tive: (A, t1), (B, t1), (A, t2), (C, t2), (B, t3), (C, t3). We
disregard the inactive nodes when we study and analyze
evolving graphs.

Definition 2.1 (Temporal path): We define a temporal
path p((vi, t1), (vj , tn)) between active nodes (vi, t1) and
(vj , tn) to be an ordered sequence of active nodes (with-
out repetition) {(vi, t1), (vi+1, t2), . . . , (vj , tn)} such that
t1 ≤ t2 ≤ · · · ≤ tn and ((vh, tk), (vh+1, tk+1)) is an
edge at timestamp tk if tk = tk+1 otherwise we have
vh = vh+1. A shortest temporal path is a temporal path
with the least number of unique nodes.

For example, there are two temporal paths from (A, t1)
to (C, t3) in Figure 1:

1) (A, t1)→ (A, t2)→ (C, t2)→ (C, t3)
2) (A, t1)→ (B, t1)→ (B, t3)→ (C, t3)

The first one is the shortest temporal path since it passed
2 nodes A and C while the second one passed 3 nodes.

Definition 2.2 (Temporal distance): We define the
spatial length of a temporal path p((vi, t1), (vj , tn))
to be the number of unique nodes in p. The shortest
temporal distance d((vi, t1), (vj , tn)) between (vi, t1)
and (vj , tn) is the spatial length of the shortest temporal
path.

For example, the shortest temporal distance between
(A, t1) and (C, t3) in Figure 1 is 2.

Definition 2.3 (Temporal connectedness): If there ex-
ists a temporal path from node (vi, tm) to node (vj , tn),
we say (vi, tm) and (vj , tn) are temporally connected.
We say node vi and vj are temporally connected if
(vi, tm) and (vj , tn) are temporally connected for some
timestamps tm, tn.

III. REPRESENTING EVOLVING GRAPHS

The graph type hierarchy in EvolvingGraphs is shown
in Figure 2.

The root of all graph types is AbstractGraph.
It has two children: AbstractStaticGraph
(the abstract type of all static graphs) and
AbstractEvolvingGraph (the abstract type

of all evolving graphs). For both static and evolving
graphs, we focus on directed graphs and model
undirected graphs using directed graphs with twice as
many edges. There are two kinds of static graphs in
EvolvingGraphs: TimeGraph represents an evolving
graph at a specified timestamp; AggregatedGraph
represents a static graph constructed by aggregating an
evolving graph, i.e., all the edges between each pair of
nodes are flattened in a single edge. For example, the
aggregated graph of Figure 1 is shown in Figure 3.
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Fig. 3: The aggregated graph of Figure 1.

All static graphs in EvolvignGraphs are represented
by adjacency lists. For evolving graphs, we consider
three types: EvolvingGraph, MatrixList and
IntEvolvingGraph, which are represented by (a)
edge lists, (b) adjacency matrices (c) a mixture of ad-
jacency lists and edge lists respectively. Other evolving
graph types are variants of one of the three types.

The edge lists representation of G is specified by
1) the number of nodes n;
2) the list of edges in G, given as a sequence of

ordered tuples (vi, vj , tn), which represents an
edge from vi to vj at timestamp tn.

The evolving graph of Figure 1 can be represented as
follows.

1) n = 3;
2) (A,B, t1), (A,C, t2), (B,C, t3).
We can also represent an evolving graph by a list of

adjacency matrices {A1, A2, . . . , Am}. Let V = ∪iV (i)
be the union of all the node sets V (i). Then each Ak is
a |V | × |V | matrix where the (i, j) entry is equal to 1
if and only if there exists an edge from the ith element
of V to the jth element of V at timestamp k, and 0
otherwise. For the evolving graph of Figure 1, we have
V = {A,B,C} and

A1 =


0 1 0

0 0 0

0 0 0

 , A2 =


0 0 1

0 0 0

0 0 0

 , A3 =


0 0 0

0 0 1

0 0 0

 .
Finally, we can represent an evolving graph G as a

mixture of adjacency lists and edge lists:
1) the number of edges e;
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Fig. 2: Graph type hierarchy.

2) the list of active nodes, given as a sequence of
ordered pairs (vi, tn), which represents an active
node vi at timestamp tn;

3) the list of timestamps;
4) m lists E1, E2, . . . , Em, where Ei contains all the

edges at timestamp i;
5) the lists of out-neighbours of each active node.

Recall that in a static graph the out-neighbours of a node
v are all the nodes pointed by node v. For evolving
graphs, we define the out-neighbours of a node v at time
t to be the set of all active nodes pointed by node v at
time t and the active node v itself at time ti, where ti > t.
For example, the out-neighbours of (A, t1) in Figure 1
are (B, t1), (A, t2). The evolving graph of Figure 1 may
be represented as follows:

1) e = 3;
2) (A, t1), (B, t1), (A, t2), (C, t2), (B, t3), (C, t3);
3) t1, t2, t3;
4) E1 : (A,B, t1);E2 : (A,C, t2);E3 : (B,C, t3);
5) (A, t1) : (B, t1), (A, t2);

(B, t1) : (B, t3);
(A, t2) : (C, t2);
(C, t2) : (C, t3);
(B, t3) : (C, t3);
(C, t3) : ∅.

Basic graph functions, like checking directedness
(is_directed) or finding out-neighours
(out_neighbors) are defined for both static
and evolving graphs. The implementations of these
functions are dispatched based on the type of graph.

IV. COMPONENTS

In this section, we discuss an algorithm for computing
weakly connected components in EvolvingGraphs. We
start by introducting the notion of weak connectedness.

Definition 4.1 (Weak connectedness): We say two
nodes (vi, tm) and (vj , tn) are weakly connected if

information can flow from (vi, tm) to (vj , tn), i.e.,
(vi, tm) and (vj , tn) are temporally connected.

Note that our notion of connectedness is reflexive and
transitive but not symmetric. The order of time breaks
the symmetry. In fact, (vi, tm) and (vj , tn) are weakly
connected only if tm ≤ tn. We can think of an edge
from vi to vj at timestamp tn as information flows
from vi to vj at timestamp tn. In modern technology
communication, a message can be received immediately
after it is sent. Thus we assume that the information flow
duration is 0, which is different from models like that in
[7]. Given an active node (v, t), we form the information
passing tree by collecting all the temporal paths that start
at (v, t).

Definition 4.2 (Information source): An information
source is a root (an active node) of the information
passing tree. We say an information source (v, t) is
a global information source if (v, t) is an information
source and no node is temporally connected to (v, t).

For example, (A, t1) is a global information source
in Figure 1. Using the notion of weak connectedness
and information source, we define the weakly connected
components of an evolving graph G as follows.

Definition 4.3 (Weakly connected components): A
weakly connected component associated with a node
(vj , tn) is the set of nodes in G which are weakly
connected by the same information source as (vj , tn).

A node vi in an evolving graph can belong to multiple
components but the partition is unique. For example,
suppose at timestamp t1, A passed a message to B and
C passed a message to D. At timestamp t2, B passed
a message to D (see Figure 4). Then there are two
information sources in this evolving graph: (A, t1) and
(C, t1) and the weakly connected components are:

• (A, t1), (B, t1), (B, t2), (D, t2);
• (C, t1), (D, t1), (D, t2).

Note (D, t2) belongs to both components.
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Fig. 4: An evolving graph with 2 time windows.

To explore an evolving graph, we need to pay attention
to the order of time. In particular, we can not go to a node
at a previous timestamp. Recall that the out-neighbours
of a node (v, t) are the active nodes pointed by node v
at timestamp t and the active node v itself at timestamp
ti, where ti ≤ t. Using this notion of out-neighbours, we
can extend the BFS algorithm for the case of evolving
graphs. Here is the BFS algorithm in EvolvingGraphs:

function breath_first_visit(
g::AbstractEvolvingGraph, s::Tuple)
level = Dict(s => 0)
i = 1
fronter = [s]
reachable = [s]
while length(fronter) > 0

next = Tuple[]
for u in fronter

for v in out_neighbors(g, u)
if !(v in keys(level))

level[v] = i
push!(reachable, v)
push!(next, v)

end
end

end
fronter = next
i += 1

end
reachable

end

This algorithm finds all the reachable nodes from
a given starting node (s, t1). Let t1 be the earliest
timestamp of G and let Ṽ be the set of all the active
nodes of G and E = ∪tE(t) be the set of all edges of
G. Since the algorithm explores the out-neighbours of

each (reachable) active node, the computational cost is

O

( ∑
(v,t)∈Ṽ

Adj[(v, t)]

)
= O(|E|).

To determine the weakly connected components of
G, we need to find all the global information sources
and then use BFS to find all the reachable nodes
from these global information sources. We may use the
function weakly_connected_components(g) in
EvolvingGraphs to discover the weakly connected com-
ponents of an evolving graph g. Let V̄ be the set of global
information sources. The computational cost for finding
the weakly connected components is O(|V̄ ||E|+|V̄ |2/2),
where calling BFS has complexity O(|V̄ ||E|) and check-
ing connected components has complexity O(|V̄ |2/2).

V. KATZ CENTRALITY

Let A be an adjacency matrix of a static graph G. The
Katz centrality rating [8] of a node i is the ith row sum
of (I − αA)−1, where α < 1/ρ(A), the spectral radius
of A. The Katz centrality vector r can be computed by
solving

(I − αA)r = 1,

where 1 is a vector of ones. It follows from the analysis
on static networks that the centrality matrix Cn of an
evolving network [4] can be formulated as

Cn = (I − αA1)−1(I − αA2)−1 · · · (I − αAn)−1, (1)

where {A1, A2, . . . , An} are the corresponding adja-
cency matrix representations of the evolving graph G =
{G1, G2, . . . , Gn} and α < 1/maxk ρ(Ak). The (i, j)
entry of the matrix Cn gives a weighted count of the
number of dynamic walks from node i to node j. The
broadcast and receive communicability vectors are

Cn1 and CTn 1,

respectively. We can compute the broadcast vector using
the following algorithm in Julia:

function katz_centrality(
g::AbstractEvolvingGraph, alpha::Real)

n = num_nodes(g)
ts = timestamps(g)
v = ones(Float64, n)
A = spzeros(Float64, n, n)
spI = speye(Float64, n)
for t in ts

A = spmatrix(g,t)
v = (spI - alpha*A)\v
v = v/norm(v)

end
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return v
end

A short list of graph functions implemented in Evolving-
Graphs is shown in Table I. By considering walks that
started recently as more important than walks that started
a long time age [9], Grindrod and Higham introduce a
time-dependent factor e−β∆tn , ∆tn = tn − t0. A variant
of (1) is given as

Sn = (I+e−β∆tnSn−1)(I−αAn)−1−I, n = 1, 2, . . . ,
(2)

where S0 = 0, the zero matrix. To see how these two
formulae are related, we write (I − αAn)−1 as (I +
αAn+α2A2

n+· · · ) and expand the right-hand side of (2).
The function katz_centrality in EvolvingGraphs
has more input options than the above implementation.
In particular, we can specify the following parameters:

• α: a real-valued scalar which controls the influence
of long distance walks;

• β: a real-valued scalar which controls the influence
of old walks;

• ◦ mode = :broadcast (by default) gener-
ates the broadcast centrality vector;

◦ mode = :receive generates the receiv-
ing centrality vector;

◦ mode = :matrix generates the communi-
cability matrix.

VI. EXAMPLES OF USE CASES

Suppose we model a network of online social users
interacting through messaging by the evolving graph of
Figure 5. Each node i represents a user in the network
and an edge from node i to node j at timestamp t rep-
resents user i sent a message to user j during timestamp
t and t+ 1. Let us first generate this evolving graph:

> g = evolving_graph(Int, String);
> add_edge!(g, 1, 2, "t1");
> add_edge!(g, 1, 3, "t2");
> add_edge!(g, 4, 5, "t2");
> add_edge!(g, 2, 3, "t3");
> add_edge!(g, 3, 1, "t3");
> add_edge!(g, 5, 6, "t3");
> g
Directed EvolvingGraph
(6 nodes, 6 edges, 3 timestamps)

Now g is an evolving graph with 6 nodes, 6 edges and
3 timestamps. We can use the functions nodes, edges
and timestamps to have a quick check to see if we
have generated the evolving graph correctly:

> nodes(g)
6-element Array{Int64,1}:
1
4
2
3
5
6
> edges(g)
6-element Array{TimeEdge{V,T},1}:
TimeEdge(1->2) at time t1
TimeEdge(1->3) at time t2
TimeEdge(4->5) at time t2
TimeEdge(2->3) at time t3
TimeEdge(3->1) at time t3
TimeEdge(5->6) at time t3
> timestamps(g)
3-element Array{String,1}:
"t1"
"t2"
"t3"

We use the function weak_connected to find out if
two users “talked” to each other between timestamp t1
and t3.

> weak_connected(g, 1, 3)
true
> weak_connected(g, 1, 5)
false

So user 1 talked to user 3 but not to user 5. We can
use the function weak_connected_components to
detect small communities in the network.

> weak_connected_components(g)
2-element Array{Array{Tuple,1},1}:
Tuple[(1,"t1"),(2,"t1"),(1,"t2"),
(1,"t3"),(2,"t3"),(3,"t2"),(3,"t3")]

Tuple[(4,"t2"),(5,"t2"),(5,"t3"),
(6,"t3")]

We see users 1, 2, 3 form a small community and users
4, 5 form another small community. At each timestamp,
g may be represented as an adjacency matrix:

> int(matrix(g, "t2"))
6x6 Array{Int64,2}:
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
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Fig. 5: An evolving graph with 3 time windows.

We can use katz_centrality to find out the “impor-
tant” users in a network. Here users 1 and 4 are the most
important users in terms of broadcasting information and
users 2 and 3 are the most important users in terms of
acting as information receivers.

> katz_centrality(g, 0.2, 0.3,
mode =:broadcast)
(6,0.0)
(2,0.27241247410068437)
(3,0.27241247410068437)
(5,0.27241247410068437)
(4,0.32591575357149416)
(1,1.5259157535714944)
> katz_centrality(g, 0.2, 0.3,
mode =:receive)
(4,0.0)
(5,0.2715964613095785)
(1,0.32673176636260004)
(6,0.32673176636260004)
(3,0.7440089354102629)
(2,1.0)

VII. CONCLUSION

The software package EvolvingGraphs is written in Ju-
lia, a new dynamic programming language for technical
computing. We discussed a node-active model for evolv-
ing graph and showed a few algorithms implemented in
EvolvingGraphs. EvolvingGraphs currently performs all
computations serially. In the future, we will design and
implement parallel graph algorithms in EvolvingGraphs
with the aim of handling extremely large scale dynamic
network problems.
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TABLE I: Examples of graph functions implemented in EvolvingGraphs, where g is an evolving graph.

Function name Description
is_directed(g) returns true if g is a directed graph and false

otherwise.
undirected!(g) converts a directed graph to an undirected graph.
num_nodes(g) returns the number of nodes in g.
nodes(g) returns a list of nodes of g.
edges(g) returns a list of edges of g.
timestamps(g) returns a list of timestamps of g, in ascending order.
add_edge!(g, v1, v2, t) adds an edge from v1 to v2 at timestamp t to g.
add_graph!(g, tg) adds a time graph tg to g.
out_neighors(g, (v,t)) returns the out-neighbours of node (v,t) in g.
aggregated_graph(g) converts g to an aggregated graph.
issorted(g) returns true if the timestamps of g are sorted

and false otherwise.
sorttime!(g) sorts g so that the timestamps of g are in

ascending order.
slice!(g, t_min, t_max) slices g between the timestamp t_min and t_max.
matrix(g, t) generates an adjacency matrix representation of g

at timestamp t.
spmatrix(g, t) generates a sparse adjacency matrix representation

of g at timestamp t.
matrix_list(g) converts g to a list of adjacency matrices

represented by MatrixList.
shortest_temporal_path(g, finds the shortest temporal path from (v1, t1)
(v1, t1), (v2, t2)) to (v2, t2).
temporal_connected(g, v1, v2) returns true if v1 are v2 are temporally connected

and false otherwise.
weak_connected_components(g) returns the weakly connected components of g.


