You are here: MIMS > EPrints
MIMS EPrints

2015.23: Efficient block preconditioning for a C1 finite element discretisation of the Dirichlet biharmonic problem

2015.23: Jennifer Pestana, Richard Muddle, Matthias Heil, Francoise Tisseur and Milan Mihajlovic (2015) Efficient block preconditioning for a C1 finite element discretisation of the Dirichlet biharmonic problem.

This is the latest version of this eprint.

Full text available as:

PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
1486 Kb

Abstract

We present an efficient block preconditioner for the two-dimensional biharmonic Dirichlet problem discretised by C1 bicubic Hermite finite elements. In this formulation each node in the mesh has four different degrees of freedom (DOFs). Grouping DOFs of the same type together leads to a natural blocking of the Galerkin coefficient matrix. Based on this block structure, we develop two preconditioners: a 2x2 block diagonal preconditioner (BD) and a block bordered diagonal (BBD) preconditioner. We prove mesh independent bounds for the spectra of the BD-preconditioned Galerkin matrix under certain conditions. The eigenvalue analysis is based on the fact that the proposed preconditioner, like the coefficient matrix itself, is symmetric positive definite and is assembled from element matrices. We demonstrate the effectiveness of an inexact version of the BBD preconditioner, which exhibits near optimal scaling in terms of computational cost with respect to the discrete problem size. Finally, we study robustness of this preconditioner with respect to element stretching, domain distortion and non-convex domains.

Item Type:MIMS Preprint
Subjects:MSC 2000 > 65 Numerical analysis
MIMS number:2015.23
Deposited By:Dr Jennifer Pestana
Deposited On:10 November 2015

Available Versions of this Item

Download Statistics: last 4 weeks
Repository Staff Only: edit this item