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Abstract

The sign characteristics of Hermitian matrix polynomials are discussed, and
in particular an appropriate definition of the sign characteristics associated with
the eigenvalue infinity. The concept of sign characteristic arises in different forms
in many scientific fields, and is essential for the stability analysis in Hamiltonian
systems or the perturbation behavior of eigenvalues under structured perturbations.
We extend classical results by Gohberg, Lancaster, and Rodman to the case of infinite
eigenvalues. We derive a systematic approach, studying how sign characteristics
behave after an analytic change of variables, including the important special case
of Möbius transformations, and we prove a signature constraint theorem. We also
show that the sign characteristic at infinity stays invariant in a neighborhood under
perturbations for even degree Hermitian matrix polynomials, while it may change for
odd degree matrix polynomials. We argue that the non-uniformity can be resolved
by introducing an extra zero leading matrix coefficient.

Keywords: Hermitian matrix polynomial, sign characteristic, sign characteristic at
infinity, sign feature, signature constraint, perturbation theory

MSC classification: 15B57, 65F15, 37J25, 37J40

1 Introduction
We study the sign characteristic of Hermitian matrix polynomials. The sign characteristic
is an invariant associated with particular eigenvalues of structured matrices, matrix
pencils, or matrix polynomials. Particular examples are Hamiltonian matrices, Hermitian,
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even/odd pencils, and their extensions to matrix polynomials [26]. We formulate our
results in terms of Hermitian matrices, pencils or polynomials and eigenvalues on the real
line, however, at least in the complex case there are completely analogous results associated
with Hamiltonian matrices, even pencils or polynomials, which are obtained by replacing λ
with ıλ, where ı =

√
−1. The sign characteristic is very important for the understanding

of several physical phenomena, such as bifurcation of solutions in dynamical systems or the
perturbation behavior of eigenvalues under structured perturbations. This perturbation
theory is essential in the stability analysis of Hamiltonian systems and in other applications
in control theory, see [5]. The sign characteristic is also closely connected to inertias
of bilinear forms as well as other invariants, and it comes in different forms and flavors
in many scientific fields and applications. For matrices and matrix pencils, the theory
goes back to Krein, see, e.g. [21, 22] and the recent survey [19], which also motivates
the term Krein characteristic. The first systematic treatment of the sign characteristic
for Hermitian matrix polynomials is given by Gohberg, Lancaster and Rodman in [9],
where they present three equivalent descriptions of the sign (see also [10, 11]). However,
their theory assumes matrix polynomials with nonsingular leading matrix coefficient1, i.e.,
regular matrix polynomials with only finite eigenvalues. A generalization to Hermitian
matrix polynomial with singular leading coefficient should be independent of specific
representations of the matrix polynomial (coefficient expansions in polynomial bases such
as, e.g., monomials, Lagrange, Newton, Chebyshev, etc.) and should be constructed in
such a way that it allows a perturbation, so the definition remains valid also in a small
neighborhood. To achieve these goals, we discuss an extension to general Hermitian
matrix polynomials of Gohberg, Lancaster and Rodman’s third description of the sign
characteristic. We derive a systematic approach which allows to show that a signature
constraint theorem still holds. We analyze in detail the consequences on the perturbation
theory. We show that in the case of odd degree matrix polynomials this does not lead
to a uniform treatment in the neighborhood of the eigenvalue infinity. This problem of
non-uniformity can be resolved by adding higher powers with zero coefficients to the
matrix polynomial. We also discuss the consequences of this procedure and present several
examples. Note that the first description of the sign characteristic in [9, 10, 11] relies on
a special linearization of the matrix polynomial expressed in the monomial basis and does
not easily extend to matrix polynomials with singular leading matrix coefficient or to
matrix polynomials expressed in non monomial bases.

Our approach to study the sign characteristics is analytic rather than algebraic,
and hence, it is essentially basis-independent. However, for the sake of concreteness
and simplicity, we have decided to present our results on matrix polynomials using the
monomial basis. We note en passant that it would be straightforward to present the
theory employing any other basis. The only potential exception is the notion of a leading
coefficient, central in Section 3. This is only natural in a degree-graded basis. Yet, the
problem is easily overcome via the notion of reversal, which is basis-independent: for
the purposes of Section 3, in fact, the leading coefficient could be defined as the reversal
polynomial evaluated at 0.

Let us consider a few well known examples from [30] expressed in the framework of
Hermitian pencils, see also the survey [5].

1Assuming that the matrix polynomial is expressed in the monomial or other degree-graded bases.
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Example 1.1. In the optimal H∞ control problem, see [3, 4, 38] one has (in the complex
case) to deal with parameterized matrix pencils of the form

x


0 ıE 0 0 0
−ıE∗ 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

−


0 −A 0 0 −B1
−A∗ 0 C∗1 C∗2 0

0 C1 γ2Ip 0 D11
0 C2 0 0 D21
−B∗1 0 D∗11 DT

21 Im

 ,

where γ > 0 is a real parameter. In the so called γ iteration one has to determine the
smallest possible γ such that the pencil has no real eigenvalues and it is essential that this
γ is computed accurately. In the limiting situation when the optimal γ is achieved, the
sign characteristic of the eigenvalue(s) on the real axis (and if E is singular the eigenvalue
infinity) plays an essential role.

Example 1.2. Consider a control system

Ev̇ = Av +Bu, v(0) = v0,

w = Cv +Du, (1)

with real or complex matrices E, A, B, C, D of sizes n× n, n× n, n×m, p× n, p×m,
respectively. If all the finite eigenvalues of the pencil xE − A are in the open left half
complex plane, then the system is passive, i.e., it it does not generate energy, if and only
if the pencil

x

 0 ıE 0
−ıE∗ 0 0

0 0 0

−
 0 A B
A∗ 0 C∗

B∗ C D +D∗


has no real eigenvalues and the eigenvalue infinity has equal algebraic and geometric
multiplicity. In industrial practice, these systems arise from the discretization of partial
differential equations, model reduction, realization or system identification, and often
they are non-passive even though the underlying physical problem is. In this case one
is interested in constructing small perturbations to E,A,B,C,D such that the system
becomes passive, see e.g., [2, 5, 6, 12], and this requires explicit knowledge about the sign
characteristic.

Example 1.3. The stability of linear second order gyroscopic systems, see [16, 24, 37],
can be analyzed via the following quadratic eigenvalue problem

P (x)v = (−x2I + xı(2δG)−K)v = 0, (2)

where G,K ∈ Cn×n, K is Hermitian positive definite, G is nonsingular skew-Hermitian,
and δ > 0 is a parameter. To stabilize the system one needs to find the smallest real δ
such that all the eigenvalues of P (x) are real, which means that the gyroscopic system is
stable. For the system to be robustly stable it is essential that multiple real eigenvalues
do not have mixed sign characteristic.

In all these applications, and many others, see [5] for a recent survey, the location of
the real eigenvalues needs to be checked numerically at different values of parameters or
perturbations. In this perturbation analysis, the sign characteristic plays a very essential
role.
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The paper is organized as follows. After some preliminaries, introducing the sign
characteristics and the sign feature in the following subsections, in Section 2 we discuss
the effect of transformations. A signature constraint theorem and its applications are
discussed in Section 3. In Section 4 we discuss the behavior of the sign characteristic
under perturbations. A short summary concludes the paper.

1.1 Notation and preliminaries
In the following by R,C we denote the real and complex numbers and by Rm×n, the set
of m × n matrices with elements in a ring R. For an open interval Ω ⊆ R we use the
following sets: Cω

C(Ω), the ring of complex valued functions that are analytic on Ω,M(Ω),
the field of fractions of Cω

C(Ω), i.e., the field of functions that are meromorphic on Ω, and
An(Ω) := Cω

C(Ω)n×n, the ring of n× n matrices with complex-valued Ω-analytic elements.
Furthermore, F[x] is the ring of univariate polynomials in x with coefficients in the

field F and F(x) is the field of fractions of F[x], i.e., the field of rational functions in x.
For A(x) ∈ An(Ω), we denote by A(x)∗ the complex conjugate transpose of A.

One of the key ingredients of our approach to studying the sign characteristic is a
theorem of Rellich [32, 33], that is used in several classical monographs such as, e.g.,
[11, 17].

Theorem 1.4 (Rellich’s Theorem). Let H(x) ∈ An(Ω) be such that H(x) = H(x)∗
for all x ∈ Ω. Then there exist V (x), D(x) ∈ An(Ω) such that for all x ∈ Ω, H(x) has
the decomposition

H(x) = V −1(x)D(x)V (x),

where D(x) = diag(d11(x), . . . , dnn(x)) is real and diagonal and V (x)−1 = V (x)∗.

Note that the nature of the proof in [11] for Ω = R is completely local, and therefore,
R can be safely replaced by any simply connected open subset of R, i.e., any open interval
Ω. In the following we call a decomposition as in Theorem 1.4 a Rellich decomposition. It
is the analytic function analogue of the spectral theorem for complex Hermitian matrices.

The normal rank of a polynomial matrix P (x) ∈ C[x]n×n, denoted by rankC(x) P (x), is
the rank of P (x) as a matrix over C(x). A finite eigenvalue of P (x) is an x0 ∈ C such
that the rank over C of P (x0) ∈ Cn×n is strictly less than the normal rank of P (x), i.e.,

rankC P (x0) < rankC(x) P (x).

Similarly, the normal rank of an analytic matrix function A(x) ∈ An(Ω) is defined as its
rank over the fieldM(Ω).

The following proposition shows that the normal rank of a Hermitian matrix func-
tion is equal to the number of nonvanishing diagonal elements of D(x) in the Rellich
decomposition.

Proposition 1.5. Let H(x) = H(x)∗ ∈ An(Ω) with normal rank r. Then n − r is the
number of diagonal elements of D(x) that are identically zero in any Rellich decomposition
H(x) = V ∗(x)D(x)V (x).

Proof. Any dii(x), i = 1, . . . , n is analytic on Ω. Let Zi ⊆ Ω be the set of zeros of dii, i.e.,
Zi = {x0 ∈ Ω|dii(x0) = 0}. By the identity theorem [20, Corollary 1.2.7], either Zi = Ω or
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Zi does not have a limit point in Ω. Hence, either Zi = Ω or Zi is a countable set. Let z
be the cardinality of the set

I = {i | 1 ≤ i ≤ n, there exists x0 ∈ Ω | dii(x0) 6= 0}, (3)

and define Z = ⋃
i∈I Zi (if z = 0, we set Z = ∅). Since I is constructed as the set

of indices i such that dii(x) 6≡ 0 on Ω, it suffices to show that z = r. Note that the
complement of Z, denoted by Ω\Z, is not empty. If z > r, then, for any x0 ∈ Ω\Z,
rankCH(x0) = rankCD(x0) = z > r, which is a contradiction. Conversely suppose that
z < r. Then for all x0 ∈ Ω, rankCH(x0) = rankCD(x0) ≤ z < r, which again is a
contradiction.

The Rellich decomposition naturally separates the invertible and non-invertible parts
of a Hermitian matrix function by means of a congruence transformation with a unitary
matrix function V (x) in An(Ω). The decomposition and the separation of the parts is
actually numerically computable, see [23, Theorem 3.9], where an explicit differential
equation for V (x) is derived and there exist numerical methods that can be used to
compute the decomposition [7, 29] . It should be noted that, even if the matrix function
is polynomial, usually the factors V (x), D(x) are not polynomial.

We use the Rellich decomposition to define the sign characteristic and a related
property, the sign feature, of a real eigenvalue of a (possibly singular) analytic Hermitian
matrix function P (x) of normal rank r, by just considering the nonzero elements of D(x).

Definition 1.6. Let H(x) = H(x)∗ ∈ An(Ω) have a Rellich decomposition H(x) =
V ∗(x)D(x)V (x) with D(x) = diag(d11(x), . . . , dnn(x)). Let λ ∈ Ω be a real root of some
dii(x) that is not identically zero on Ω, and consider a Taylor expansion

dii(x) = ελi c
λ
i (x− λ)mλi + o((x− λ)mλi ), (4)

where mλ
i ∈ N, cλi ∈ R is positive and ελi ∈ {1,−1}. We say that mλ

i is the ith partial
multiplicity of the real eigenvalue λ of H(x) and that ελi is its ith sign characteristic.
Furthermore,

φλi = 1− (−1)mλi
2 ελi

is called the ith sign feature of λ.

Remark 1.7. If we express (4) as

dii(x) = (x− λ)mλi ν(x),

with ν(λ) 6= 0, then the ith sign characteristic of λ is given by sign(ν(λ)).

Remark 1.8. Usually, for a real analytic A(x), the partial multiplicities of an eigenvalue
are defined via the Smith normal form, which is possible since Cω

C(Ω) is an elementary
divisor domain [14], and hence, the Smith form exists. When a Smith form exists, then
also a local Smith form exists, a fact that can be shown in a similar way as for the
polynomial case in [11, Theorem S1.10]). However, note that in the Rellich decomposition
of a Hermitian H(x) = V ∗(x)D(x)V (x), we have that V (λ) is nonsingular for any λ ∈ Ω.
Therefore, the local Smith forms at λ of H(x) and D(x) are the same, and hence, the
partial multiplicities are also equal.
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The sign characteristics have the property of being invariant under analytic congruence
transformations.

Theorem 1.9 (Theorem 3.6 in [9]). Let H(x) = H(x)∗ ∈ An(Ω), and assume that λ ∈ Ω
is an eigenvalue of H(x). Let R(x) ∈ An(Ω) satisfy detR(λ) 6= 0. Then H(x) and
R∗(x)H(x)R(x) have the same sign characteristics at λ.

One of the main goals of this paper is to extend the concept of sign characteristic to
the eigenvalue at infinity and thus to extend the classical results of Gohberg, Lancaster
and Rodman in [9] to matrix polynomials with singular leading matrix coefficient. To
do this in a systematic way, we need the concept of the grade of a matrix polynomial.
Consider a matrix polynomial

P (x) =
k∑
j=0

Pjx
j, Pj ∈ Cn×n, j = 1, . . . , k

of degree k, i.e., the leading matrix coefficient Pk is not the zero matrix. Then we can
associate with P an integer g ≥ k, called grade of P and express P as

P (x) =
g∑
j=0

Pjx
j, Pi ∈ Cn×n, j = 1, . . . , k, Pk+1, . . . , Pg = 0.

At first sight this looks artificial, but under some circumstances, and especially for
structured matrix polynomials, it is a very useful concept, see [27, 28]. In particular, and
this is the main reason for using the grade instead of the degree, it has been shown in
[27, 31] that Möbius transformations, which play an important role in our analysis, are
grade-preserving, but in general not degree-preserving.

Once the grade g of a matrix polynomial P (x) = ∑g
j=0 Pjx

j is fixed, the reversal of P
is given by

revg P (x) = xgP (x−1) =
g∑
j=0

Pjx
g−j,

and the ith partial multiplicity of the eigenvalue 0 of revg P (x) is defined to be the ith
partial multiplicity of the eigenvalue ∞ of P (x).

Using the reversal we can then also introduce the ith sign characteristic of the
eigenvalue ∞.

Definition 1.10 (Sign characteristic and sign feature of the eigenvalue infinity). Let
P (x) ∈ C[x]n×n be Hermitian, have grade g and let S(v) = − revg P (v). If P (x) has
an eigenvalue at infinity with ith partial multiplicity m∞i , then we say that the sign
characteristic of infinity, ε∞i , is the sign characteristic of the eigenvalue 0 of S(v) having
corresponding ith partial multiplicity. Furthermore, we call

φ∞i = 1− (−1)g+m∞i
2 ε∞i

the ith sign feature at ∞ of P (x).

To see that this definition is reasonable, we first show that it does not depend on the
particular choice of the grade.
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Proposition 1.11. Let P (x) ∈ C[x]n×n be Hermitian, have grade g and degree k. The
definition of the sign feature at ∞ does not depend on the particular choice of the grade,
i.e., the ith sign feature φ∞i is the same for all g > k. For g = k, the definition remains
consistent provided that the corresponding partial multiplicity does not become zero (in
which case there is no sign feature because infinity is not an eigenvalue anymore).

Proof. If g = k + g1, then S(v) = − revg(P ) = −vg1 revk(P )(v) = vg1S̃(v). Let D̃(v) be
the diagonal term in a Rellich decomposition of S̃(v), then we obtain that D(v) = vg1D̃(v)
is the diagonal term in a Rellich decomposition of S(v). Then, since both the ith partial
multiplicity of 0 and the degree k are increased by g1, it is clear that the sign feature at
infinity is independent of the choice of grade.

Remark 1.12. From the relation S(v) = vg1S̃(v) in the proof of Proposition 1.11, the ith
partial multiplicity m∞i of ∞ of P (x) with grade g corresponds to a partial multiplicity
m∞i − (g − k) of P (x) with grade k, i.e., grade equal to degree. The use of grade (when
g > k) introduces additional eigenvalues at ∞, all with partial multiplicities g − k. This
provides a simple way to distinguish the “original” infinite eigenvalues from the “artificial”
ones, the former having partial multiplicities > g − k.

The motivation for the minus sign in the definition of S(v) and the presence of g in
the definition of the sign feature is that we aim to obtain an elegant signature constraint
theorem, as we will see in the next sections. This goal could have also been achieved via
the definition of an anti reversal, xgP (−x−1). It is not clear which choice is better, but
we prefer our definition, since it has been used in the previous literature [1, 35].

2 Transformations and their effect on the sign char-
acteristics

In this section we study the effect of transformations of the form

H(x) 7→ E(y) = w(y)H(f(y)) (5)

on the sign characteristics and the sign features, where in (5) f(y) is a diffeomorphism
and w(y) is a nonvanishing function. We restrict our attention to smooth real-analytic
transformations, as we want to preserve analyticity.

Definition 2.1. Let Ω ⊆ R be an open interval, and let f : Ω→ f(Ω) be a real-valued
real-analytic diffeomorphism. We say that f is orientation-preserving if f ′ := df

dy
> 0 while

f is orientation-inverting if f ′ < 0.

Observe that this definition makes sense, because any real diffeomorphism must have
a derivative of constant sign. Note that this is a simpler version (on a one-dimensional
Euclidean space) of the more general concept of an orientation-preserving diffeomorphism
[34, Definition 4.1.3].

Theorem 2.2. Let Ω ⊆ R be an open interval, and let f : Ω → f(Ω) be a real-valued
analytic diffeomorphism. Let H(x) ∈ An(f(Ω)) be an analytic Hermitian matrix function,
and suppose that x0 ∈ f(Ω) is an eigenvalue of H(x). Consider the map defined via
H(x) 7→ E(y) = H(f(y)). Then the following assertions hold.
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1. If f is orientation-preserving, then the sign characteristics of y0 = f−1(x0) as an
eigenvalue of E(y) are equal to the sign characteristics of x0 as an eigenvalue of
H(x).

2. If f is orientation-inverting, then the sign characteristics of y0 = f−1(x0) as an
eigenvalue of E(y) are equal to the sign characteristics of x0 as an eigenvalue of
H(x) for the even partial multiplicities, and are equal to the negatives of the sign
characteristics of x0 as an eigenvalue of H(x) for the odd partial multiplicities.

Proof. Since f is diffeomorphic, it is in particular an open map, and thus f(Ω) is open
and (simply) connected, i.e., it is an open interval. Moreover, H(x) is self-adjoint and
analytic for all x ∈ f(Ω) if and only if E(y) is self-adjoint and analytic for all y ∈ Ω,
using the fact that the composition of two analytic functions is analytic. Therefore, H(x)
has a Rellich decomposition H(x) = V (x)∗D(x)V (x) for any x ∈ f(Ω), and analogously,
E(y) has a Rellich decomposition for any y ∈ Ω. It follows that V (x) is analytic and
unitary for all x ∈ f(Ω) if and only if V (f(y)) is for all y ∈ Ω, as f is locally analytic
and invertible. This implies that V ∗(f(y))D(f(y))V (f(y)) = E(y) is again a Rellich
decomposition. Suppose that dii(x) = (x − x0)m

x0
i ν(x) for some i = 1, . . . , n. Then

dii(f(y)) = (f(y) − f(y0))m
y0
i ν(f(y)), with mx0

i = my0
i , and ν(x0) = ν(f(y0)) 6= 0. Yet,

using a Taylor expansion, for any y ∈ Ω we can write f(y) = f(y0) + (y − y0)f ′(υ), for
some υ ∈ [y, y0] ⊂ Ω, or υ ∈ [y0, y] ⊂ Ω, according to whether y < y0 or y > y0. Hence
(f(y)−f(y0))m

y0
i ν(f(y)) = (y−y0)m

y0
i (f ′(υ))m

y0
i ν(f(y)). Therefore, the sign characteristic

does not change if f is orientation-preserving, while it is multiplied by (−1)m
y0
i if f is

orientation-inverting.

Theorem 2.2 emphasizes the intuitive fact that the orientation plays an important role,
and that one needs to keep track of whether a change of variable is orientation-preserving
or orientation-inverting.

Remark 2.3. Note that the statement of Theorem 2.2 includes the special cases Ω = R
or f(Ω) = R, i.e., a diffeomorphism from the real line to an open interval, or vice
versa. This could be exploited to define the signs at infinity using, for example, the map
P (x) 7→ (sin θ)gP (cot θ). Note in fact that f(θ) = cot θ is analytic and diffeomorphic in
(0, π), so that this approach is essentially equivalent to the one via reversals (it excludes
one point). However, we will not follow this approach as we prefer to map polynomials to
polynomials.

From Theorem 2.2, we can easily deduce as a corollary the effect of a reparametrization
on the sign feature.

Theorem 2.4. Under the assumptions of Theorem 2.2, the following assertions hold.

1. If f is orientation-preserving, then the sign features of y0 = f−1(x0) as an eigenvalue
of E(y) are equal to the sign features of x0 as an eigenvalue of H(x).

2. If f is orientation-inverting, then the sign features of y0 = f−1(x0) as an eigenvalue
of E(y) are the negatives of the sign features of x0 as an eigenvalue of H(x).

As a second step we analyze the effect on the sign characteristic of multiplications by
non-vanishing functions.
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Theorem 2.5. Let H(x) = H(x)∗ ∈ An(Ω) and let E(x) = w(x)H(x), with an analytic
non-vanishing function w : Ω→ R. Then the sign characteristics (resp., features) of an
eigenvalue x0 ∈ Ω of E(x) are equal to the sign characteristics (resp., features) of x0 as
eigenvalue of H(x) multiplied by sign(w(x0)).

Proof. With a Rellich decomposition H(x) = V ∗(x)D(x)V (x), we obtain a Rellich decom-
position of E by E(x) = V ∗(x)[w(x)D(x)]V (x) and dii(x) = (x− x0)m

x0
i ν(x) if and only

if [w(x)D(x)]ii = (x− x0)m
x0
i w(x)ν(x), from which the claim follows.

Example 2.6 (Effect of a Möbius transformation on the sign characteristics
and on the sign features). As an application of the discussed transformations, we
study the effect of a real Möbius transformation on the sign characteristics of a Hermitian
matrix polynomial. Suppose that P (x) ∈ C[x]n×n is Hermitian and has grade g, and for
α, β, γ, δ ∈ R let ∆ := det

[
α
γ
β
δ

]
6= 0. Then with the Möbius transformation f(y) = αy+β

γy+δ
we have that f ′(y) = ∆

(γy+δ)2 , and hence, f is a diffeomorphism on (−∞,−δ/γ) and in
(−δ/γ,+∞). It is either orientation inverting or orientation preserving according to the
sign of ∆.

Now consider the mapping

P (x) 7→ Q(y) = (γy + δ)gP
(
αy + β

γy + δ

)
.

Applying Theorems 2.2, 2.4, and 2.5, as well as Definition 1.10, we obtain the following
results.

• A finite eigenvalue λ 6= α/γ of P is mapped to a finite eigenvalue µ = δλ−β
α−γλ of Q.

• If λ has ith partial multiplicity mλ
i , sign characteristic ελi and sign feature φλi , then

one has the following cases:

– if mλ
i is even, then by definition both λ and µ must have sign feature 0;

– if mλ
i is even and g is even, then λ and µ must have the same sign characteristic;

– if mλ
i is even and g is odd, then λ has sign characteristic ελi if and only if µ

has sign characteristic sign(γµ+ δ)ελi ;
– if mλ

i is odd and g is even, then λ has sign characteristic ελi (resp. sign
feature φλi ) if and only if µ has sign characteristic sign(∆)ελi (resp. sign feature
sign(∆)φλi );

– if mλ
i is odd and g is odd, then λ has sign characteristic ελi (resp. sign feature

φλi ) if and only if µ has sign characteristic sign(γµ+ δ) sign(∆)ελi (resp. sign
feature sign(γµ+ δ) sign(∆)φλi ).

Let us now first assume that γ 6= 0. In this case, one has the following.

• The finite eigenvalue λ̃ = α/γ of P is mapped to the eigenvalue µ̃ =∞ of Q.

• If λ̃ has ith partial multiplicity mλ̃
i , sign characteristic ελ̃i and sign feature φλ̃i , then

one has the following cases:
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– if mλ̃
i is even and g is even, then λ̃ and µ̃ must have opposite sign characteristic,

and the sign feature of µ̃ is by definition equal to 0;

– if mλ̃
i is even and g is odd, then λ̃ has sign characteristic ελ̃i if and only if µ̃

has sign characteristic − sign(γ)ελ̃i . Moreover, µ̃ has sign feature − sign(γ)ελ̃i ;

– if mλ̃
i is odd and g is even, then λ̃ has sign characteristic ελ̃i (resp. sign

feature φλ̃i ) if and only if µ̃ has sign characteristic sign(∆)ελ̃i (resp. sign feature
sign(∆)φλ̃i );

– if mλ̃
i is odd and g is odd, then λ̃ has sign characteristic ελ̃i if and only if µ̃ has

sign characteristic sign(γ) sign(∆)ελ̃i . Moreover, µ̃ has sign feature 0.

• The eigenvalue λ̂ =∞ is mapped to the finite eigenvalue µ̂ = −δ/γ.

• If λ̂ has ith partial multiplicity mλ̂
i , sign characteristic ελ̂i and sign feature φλ̂i , then

one has the following cases:

– if mλ̂
i is even, then by definition µ̂ must have sign feature 0;

– if mλ̂
i is even and g is even, then λ̂ and µ̂ must have opposite sign characteristic;

– if mλ̂
i is even and g is odd, then λ̂ has sign characteristic ελ̂i if and only if µ̂

has sign characteristic sign(γ) sign(∆)ελ̂i ;
– if mλ̂

i is odd and g is even, then λ̂ has sign characteristic ελ̂i (resp. sign
feature φλ̂i ) if and only if µ̃ has sign characteristic sign(∆)ελ̂i (resp. sign feature
sign(∆)φλ̂i );

– if mλ̂
i is odd and g is odd, then λ̂ has sign characteristic ελ̂i if and only if µ̂ has

sign characteristic − sign(γ)ελ̂i . Moreover, µ̂ has sign feature − sign(γ)ελ̂i .

Conversely, if γ = 0, then the eigenvalue infinity stay at infinity. Assuming that ∞, as an
eigenvalue of P , has partial multiplicity m∞i , sign characteristic ε∞i , and sign feature φ∞i ,
then one has the following (note that α 6= 0 6= δ since otherwise ∆ = 0):

- if m∞i and g are either both even or both odd, then ∞ has sign feature 0 both as
an eigenvalue of P and as an eigenvalue of Q;

- if m∞i is even and g is even, then ∞ must have the same sign characteristic when
seen as an eigenvalue of P and when seen as an eigenvalue of Q;

- if m∞i is even and g is odd, then ∞ has sign characteristic ε∞i (resp. sign feature
φ∞i ) as an eigenvalue of P if and only if it has sign characteristic sign(α)ε∞i (resp.
sign feature sign(α)φ∞i ) as an eigenvalue of Q;

- if m∞i is odd and g is even, then ∞ has sign characteristic ε∞i (resp. sign feature
φ∞i ) as an eigenvalue of P if and only if it has sign characteristic sign(∆)ε∞i (resp.
sign feature sign(∆)φλ̂i ) as an eigenvalue of Q;

- if m∞i is odd and g is odd, then ∞ has sign characteristic ε∞i as an eigenvalue of P
if and only if it has sign characteristic sign(δ)ε∞i as an eigenvalue of Q.

10



In this section we have studied the effect of transformations on the sign feature and
sign characteristic. These results will be used in the following section to derive a global
constraint for these quantities.

3 A signature constraint theorem
In this section we discuss a conservation law for the sign feature and sign characteristic,
extending to possibly singular matrix polynomials the signature constraint theorem [11].
Consider a Hermitian matrix polynomial P (x) of grade g. Then P (x) is holomorphic on
the whole complex plane C, so in particular its restriction to the real line is real analytic,
and the results of the previous section apply with Ω = R.

Recall that the Sylvester inertia index, or simply inertia, of a Hermitian matrix H is the
triple (n+, n0, n−), where n+ (resp. n0, n−) is the number of positive (resp. zero, negative)
eigenvalues of H. Furthermore, the signature of H is defined as sig(H) = n+ − n−.

To derive a signature constraint law, it is convenient to first discuss the case where P (x)
has no infinite eigenvalues. A sufficient condition for this is that P (x) has nonsingular
leading matrix coefficient Pg. In this case, the proof can be found in [11, Proposition
10.12]. Note that [11, Proposition 10.12] is stated for a monic matrix polynomial, but it is
easily generalizable to any nonsingular leading matrix coefficient using [10, Eqn. 12.2.12].
Our signature constraint result, Theorem 3.4, is stronger, because it allows for a general
Hermitian P (x), including the case that the leading matrix coefficient Pg is singular. In
the following we denote by ΛR∗(P ) the set of all real eigenvalues of the matrix polynomial
P including ∞, and we use again the set I as defined in (3). For i ∈ I, λ ∈ ΛR∗(P ) we
denote by mλ

i , φλi (P ), respectively, the ith partial multiplicity and sign feature associated
with λ and P .

Theorem 3.1. Let P (x) = ∑g
j=0 Pjx

j be a Hermitian matrix polynomial of grade g with
no infinite eigenvalues. For λ ∈ ΛR∗(P ) and i ∈ I, let mλ

i be the partial multiplicities,
and let φλi (P ) be the corresponding sign features. Then

∑
λ∈ΛR∗ (P ), i∈I

φλi (P ) =

0 if 2 | g
sig(Pg) if 2 - g

Proof. Since there are no eigenvalues at infinity, it follows that rankPg = r = rankC(x) P (x).
Observe that this implies that either P (x) ≡ 0 or that g is equal to the degree k of P .
If P (x) ≡ 0, then the assertion holds trivially, so we consider the case k = g and let
(n+, n−, n0) be the inertia of Pg. Note that n+ + n− + n0 = n and that n0 = n− r. Then
the proof follows by a counting argument on the number of zeros with odd multiplicity of
dii(x), i ∈ I.

Indeed, for i ∈ I a root λ ∈ ΛR∗(P ) of dii(x) has odd multiplicity mλ
i if and only if it

is associated with an eigenvalue of nonzero sign feature. In other words, the sign feature
is −1 if dii(x) is positive to the left of the root and negative to the right, and it is +1 if it
is negative to the left and positive to the right. Now let β > 0 be larger than the largest
(in absolute value) real eigenvalue of P (x). Then

sign(dii(β))− sign(dii(−β))
2

11



counts the sum of total sign features associated to that value of i. Summing over all i ∈ I
we get that the sum of all the sign features is∑

i∈I

sign(dii(β))− sign(dii(−β))
2 =

∑
i∈I sign(dii(β))−∑i∈I sign(dii(−β))

2 .

Suppose first that g is even. Then P (β) and P (−β) both have the same inertia as Pg,
and therefore the right hand side is equal to

1
2(n+ − n− − n+ + n−) = 0.

If g is odd, then P (β) has the same inertia as Pg and P (−β) has the same inertia as −Pg.
Therefore, the right hand side becomes

1
2(n+ − n− + n+ − n−) = sig(Pg).

To extend the result to the case where P has infinite eigenvalues, it is convenient to
consider three auxiliary matrix polynomials. Let β > |λmax|, where λmax is the finite real
eigenvalue of P of maximal absolute value. Then introduce

Q(y) := (−y)gP
(
βy + 1
−y

)
, R(z) := zgP

(
βz − 1
z

)
. (6)

Observe that neither Q nor R has an infinite eigenvalue, so that we can apply Theorem
3.1 to them. We have the following lemma.
Lemma 3.2. Let P (x) = ∑g

j=0 Pjx
j be a Hermitian matrix polynomial of grade g. Let

I be defined as in (3). If λ is a finite real eigenvalue of P (x) with partial multiplicities
mλ
i and sign features φλi (P ), i ∈ I, then −1

β+λ is a finite eigenvalue of Q(y) with partial
multiplicities mλ

i and sign features φλi (P ), i ∈ I, and in the same way, 1
β−λ is a finite

eigenvalue of R(z) with partial multiplicities mλ
i and sign features φλi (P ), i ∈ I.

If λ =∞ is an eigenvalue of P (x) with partial multiplicities m∞i , i ∈ I, then 0 is an
eigenvalue of both Q(y) and R(z) each with multiplicities m∞i , i ∈ I, and furthermore, if
g is even, then the sign features of 0 as an eigenvalue of Q and R are the same, while if g
is odd, then the sign features of 0 as an eigenvalue of Q and R are opposite in sign.
Proof. The conservation of the partial multiplicities follows immediately from [28, Theorem
5.3] or [31, Theorem 4.1]. Thus, it suffices to prove the statements on the sign features for
which we apply Theorems 2.4 and 2.5, or equivalently Example 2.6. We observe that both
Möbius reparametrizations y = −1

β+x and z = 1
β−x are orientation preserving (on the open

intervals where they are a diffeomorphism), because they have determinant 1. Therefore
the sign features of a finite nonzero real eigenvalue of Q (resp. R) can only differ from
those of the corresponding finite real eigenvalue λ of P if g is odd and 1

β+λ (resp. 1
β−λ) is

negative. But this happens if and only if λ < −β (resp. if and only if λ > β), which is
impossible by the definition of β.

Finally, by comparing the two Möbius transformations in (6), we see that R(z) =
(2βz − 1)gQ( −z

2βz−1). Using Theorem 2.4 we see that the reparametrization has no effect
because it is orientation preserving. However, by Theorem 2.5, the global factor (−1)g
comes into play, thus proving the assertions on the sign features associated with the 0
eigenvalue of Q(y) and R(z).

12



A third matrix polynomial with eigenvalues at 0 is S(v) as constructed in Definition 1.10.
Comparing S(v) with Q(y) and R(z) we have the following Lemma.

Lemma 3.3. Let P (x) = ∑g
j=0 Pjx

j be a Hermitian matrix polynomial of grade g with
eigenvalue λ =∞ and partial multiplicities m0

i , i ∈ I. Then we have the following cases.

• If m0
i is odd and

– if g is odd then the associated sign characteristics ε0i of Q and S are the same,
and they are the opposite of those of R;

– if g is even then the sign characteristic ε0i of Q, R, and S are all the same.

• If m0
i is even and

– if g is odd then the sign characteristics ε0i of R and S are the same, and are
the opposite of those of Q;

– if g is even then the sign characteristics ε0i of R and Q are the same, and are
the opposite of those of S.

Proof. The proof follows from the relations Q(y) = −(βy + 1)gS( −y
βy+1) and R(z) =

−(βz − 1)gS( z
βz−1), and by repeated application of Theorems 2.4 and 2.5 (and of the

details in the proof of Theorem 2.4) analogous to the proof of Lemma 3.2.

Combining these results we have the following theorem.

Theorem 3.4 (Signature Constraint Theorem). Let P (x) = ∑g
j=0 Pjx

j be a Hermitian
matrix polynomial of grade g. Then

∑
λ∈ΛR∗ (P ), i∈I

φλi =

0 if 2 | g,
sig(Pg) if 2 - g.

Proof. Suppose first that g is even. Applying Theorem 3.1 to Q(y) with real eigenvalue
set ΛR(Q) = Λ(Q) ∩ R, we get that

0 =
∑

06=λ∈ΛR(Q), i∈I
φλi (Q) +

∑
i∈I

φ0
i (Q).

By Lemma 3.2 we have ∑
06=λ∈ΛR(Q), i∈I

φλi (Q) =
∑

∞6=λ∈ΛR∗ (P ), i∈I
φλi (P ),

whereas by Lemma 3.3 ∑
i∈I

φ0
i (Q) =

∑
i∈I

φ0
i (S),

using the fact that g is even and that m0
i must be odd, because otherwise φ0

i (Q) = 0 does
not contribute to the summation. The assertion follows, since by definition φ0

i (S) = φ∞i (P )
as g is even.

The case of odd g requires some further discussion. Consider β as a parameter
varying in (|λmax|,+∞). Let A(β) (resp. B(β)) be the leading matrix coefficient of
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Q(y) (resp. R(z)). From the formula in [31, Proof of Proposition 3.2, second bullet]
we get A(β) = (−1)gP (−β) and B(β) = P (β). Moreover, both A and B are Hermitian
matrices that depend analytically on the real parameter β, and hence, by Theorem 1.4 and
Proposition 1.5 we have that their eigenvalues are analytic functions of β, of which n− r
are constantly zero, where r is the normal rank of P (x) and n is its size. In particular,
since there is no eigenvalue of P (x) in the interval (|λmax|,+∞), the number of positive
and negative eigenvalues of A(β) and B(β) must be independent of β. As a consequence,
their signatures are constant, and we may simply write sig(A) and sig(B), omitting β.
Let b = β−1. It is easy to check that β−gA(β) = −S(−b), while β−gB(β) = −S(b), and
that Pg = − limb→0+ S(−b) = − limb→0+ S(b).

Being polynomial, S(b) is analytic at 0, and hence, it admits a Rellich decomposition.
Setting γ = dim kerPg + r − n, such a decomposition is given by

S(b) = V (b)∗
(

0n−r ⊕
r−γ⊕
j=1

(
α0
j + o(b0)

)
⊕

γ⊕
j=1

(
ε0jc

0
jb
m0
j + o(bm0

j )
))
V (b), (7)

where 0k is the k×k zero matrix, ⊕ denotes the direct sum, α0
j are some nonzero constants,

c0
j are positive constants, and ε0j (resp. m0

j) are the sign characteristics (resp. partial
multiplicities) at 0 of S(b), which are, by definition, the sign characteristics (resp. partial
multiplicities) at ∞ of P (x). Clearly, the signature of S(b) is the same as the signature of
the diagonal matrix in (7).

When |b| > 0 is small enough, then only the lowest order terms in b matter. Thus,
there exists b0 > 0 such that for 0 < b < b0 we have that

sig(S(b)) =
r−γ∑
i=1

sign(α0
i ) +

γ∑
i=1

ε0i .

Similarly there exists b1 > 0 such that for −b1 < b < 0 it holds that

sig(S(−b)) =
r−γ∑
i=1

sign(α0
i ) +

γ∑
i=1

(−1)m0
i ε0i .

On the other hand

sig(Pg) = − sig lim
b→0+

S(b) = − sig(S(0)) = −
r−γ∑
i=1

sign(α0
i ).

Using that − sig(A) = − sig(β−gA) = sig(S(−b)) and − sig(B) = − sig(β−gB) =
sig(S(b)), we obtain

2 sig(Pg)− sig(A)− sig(B) = 2
∑

m0
i even

ε0i .

On the other hand, applying Theorem 3.1 twice, we get

sig(A) + sig(B) =
∑

06=λ∈ΛR(Q), i∈I
φλi (Q) +

∑
i∈I

φ0
i (Q) +

∑
06=λ∈ΛR(R), i∈I

φλi (R) +
∑
i∈I

φ0
i (R).

Using Theorem 3.1, Lemma 3.2 and Lemma 3.3 (with g odd), this is in turn equal to

sig(A) + sig(B) = 2
∑

∞6=λ∈ΛR∗ (P ), i∈I
φλi (P ).

The result follows by observing that, when m0
i is even, ε0i is, by definition, the sign feature

at infinity of P (x).
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Remark 3.5. Observe that, when g > k, the sum of the sign feature is always zero for
any g because Pg = 0. The difference occurs only when g = k. If k is even the sum is still
zero, but when k is odd, the sum is sig(Pk).

However, the proof of Theorem 3.4 shows that the sign characteristics associated
with partial multiplicities g − k (that are, by Remark 1.12, associated with those infinite
eigenvalues that are “artificial”) are the inertia indices of −Pk. Moreover, their sign
features are all zero if k is even and are their sign characteristics if k is odd. Hence, the
sum of the “extra” sign features at infinity is zero when k is even and is −sig(Pk) is k is
odd, making the whole picture coherent.
Remark 3.6. Observe that Theorem 3.4 can also be obtained by defining the sign
features at infinity as the sign features of the anti reversal T (z) = zgP (−z−1). Indeed,
it is immediate that T (z) = (−1)g+1S(−z), and hence, the sign characteristic of a zero
eigenvalue of partial multiplicity m0

i of T (z) is (−1)g+1+m0
i times the sign characteristic of

a zero eigenvalue of S(w), of the corresponding partial multiplicity. In particular, when
g + m0

i is odd, then these signs are unchanged. But given Definition 1.10, the case of
g +m0

i odd is precisely the one that is relevant in Theorem 3.4.

3.1 Connection with the canonical form of Hermitian pencils
In this section we discuss the connection of our results to the canonical form for Hermitian
pencils under congruence, see [25, 36] and the references therein.
Theorem 3.7 (Theorem 6.1 in [25]). Every Hermitian pencil A+ xB is congruent to a
pencil of the form

0u×u ⊕
p⊕
i=1

x

 0 0 Fρi
0 0 0
Fρi 0 0

+G2ρi+1 ⊕
r⊕
i=1

δi[Fki + xGki ]⊕
q⊕
i=1

ηi[(x+ αi)F`i +G`i ]

⊕
s⊕
i=1

[
0 (x+ βi)Fmi

(x+ βi)Fmi 0

]
+
[

0 Gmi

Gmi 0

]
,

where u, ρi ≤ · · · ≤ ρp, k1 ≤ · · · ≤ kr, l1 ≤ · · · ≤ lq, and m1 ≤ · · · ≤ ms are positive
integers, αj are real numbers, βj are complex nonreal numbers, δ1, . . . , δr, η1, . . . , ηq are
equal to +1 or −1, and

Fn =


0 1

. .
.

1 0

 ∈ Rn×n, Gn =
[
Fn−1 0

0 0

]
. (8)

This canonical form is uniquely determined up to permutations of the blocks, and up to
replacing βj by βj inside the corresponding blocks.

We first give a technical lemma that is useful to compute the signature of the leading
matrix coefficient of a Hermitian pencil.
Lemma 3.8. The signatures of the coefficients of x in each diagonal block in the canonical
form of Theorem 3.7 are:

sig(0u×u) = sig


 0 0 Fρi

0 0 0
Fρi 0 0


 = sig

([
0 Fmi
Fmi 0

])
= 0,
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sig(Gki) = 1 + (−1)ki
2 , sig(F`i) = 1− (−1)`i

2 .

Proof. We just need to prove that sig(F`i) = 1−(−1)`i
2 , as all the other claims follow

immediately (recalling that
[

0
A
A
0

]
is similar to A ⊕ −A.) Suppose first that `i = 2µi is

even. Then, block-diagonalizing xI2µi − F2µi by an appropriate permutation similarity,
it is readily seen that det(xI2µi − F2µi) = (x2 − 1)µi , yielding sig(F2µi) = 0. The case
of odd `i = 2µi + 1 can be reduced to the previous one, as by a Laplace expansion by
the central row, we have det(xI2µi+1 − F2µi+1) = (x − 1) det(xI2µi − F2µi), and hence,
sig(F2µi+1) = 1.

It turns out that the signs δ1, . . . , δr, η1, . . . , ηq in Theorem 3.7 determine the sign
characteristics associated with real and infinite eigenvalues, as the next results show. Note
that in the literature there is a minor incoherence in the description of the exact relation
between these signs and the sign characteristic, see e.g., [25].

Theorem 3.9. The analytic Hermitian matrix pencil (x + α)F` + G`, where F` and
G` are as in (8), has a unique real eigenvalue at −α of partial multiplicity ` and sign
characteristic (−1)`+1.

The analytic Hermitian matrix pencil Fk + xGk has a unique eigenvalue at infinity of
partial multiplicity k and sign characteristic (−1)k.

Proof. It suffices to prove the first statement, as together with Definition 1.10 it immedi-
ately implies the second. Observe that by a simple change of variable we may assume
that α = 0. It is clear by direct inspection that A(x) = xF` + G` has an eigenvalue at
0 of partial multiplicity ` and geometric multiplicity 1. It remains to compute its sign
characteristic.

By the definition of G`, A(0) has precisely one zero eigenvalue. Therefore, using the
Rellich decomposition (Theorem 1.4) of A(x) and Definition 1.6, it is clear that the sign
characteristic at 0 of A(x) is just

lim
x→0+

sig(A(x))− sig(A(0)).

By Lemma 3.8, sig(A(0)) = 1+(−1)`
2 . On the other hand, for any x > 0, A(x) is congruent

to xF`. Indeed, first one can take A(x) to x(F` + G`) by either the simple diagonal
congruence diag(. . . , x, 1, x−1, . . . ), for odd values of `, or the simple diagonal congruence
diag(. . . , x, , x 1

2 , x−
1
2 , x−1, . . . ), for even values of `. To show that F` + G` and F` are

congruent, let N` be the nilpotent Jordan block of size ` and observe that G` = N`F` =
F`N

T
` . It easily follows that for any real polynomial p, p(I` + N`)F = Fp(I` + N`)T =

Fp(I` + N`)∗. Let S` be the principal square root of I` + N`, see [15], then S` is a real
polynomial in I` +N`, and S`FS∗` = S2

`F` = F` +G`, displaying the desired congruence.
Thus, again by Lemma 3.8, sig(A(x)) = 1−(−1)`

2 , and hence, the sign characteristic of
A(x) at 0 is (−1)`+1.

Hence, we may easily obtain an alternative proof of Theorem 3.4 for the special case
of pencils, i.e., g = 1. Indeed, observe that there is no less of generality in assuming that
a pencil A + Bx is in the canonical form described in Theorem 3.7, for if it is not, we
may just apply Theorem 1.9 (specialized to the case where A(x) is a pencil and R(x) is
constant and nonsingular).
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Then, since B is block diagonal, its signature is the sum of the signatures of each
block, i.e., by Lemma 3.8,

sig(B) =
∑

i : `i odd
ηi +

∑
i : ki even

δi.

But on the other hand, by Theorem 3.9, the sign feature of any finite real eigenvalue
αi is precisely 0 if `i is even and ηi if `i is odd, whereas the sign feature of any infinite
eigenvalue is 0 if ki is odd and δi if ki is even. Therefore, we have verified that Theorem 3.4
is coherent with Theorem 3.7.

4 Perturbation theory and sign features: a local con-
servation rule

Theorem 3.4 can be interpreted as a global conservation law. If the Hermitian matrix
polynomial P (x) is perturbed, then the sum of its sign features (for even g) or the sum
of its sign features minus the signature of its leading matrix coefficient (for odd g) is
preserved.

However, as we will discuss in this section, a stronger result can be proved, that the
sign features of a regular self-adjoint matrix function are locally preserved. Related results
are obtained in [9, Section 3.2] in the case of a polynomial with nonsingular leading
matrix coefficient. Here we give a more general statement with our own proof. We will
also explain why the result is false for singular analytic matrix functions. Then, we will
see some application to the perturbation theory of regular Hermitian matrix polynomial,
discussing the nontrivial role of the grade.

4.1 Classical results on the smoothness of eigenvalues
Before considering the local conservation results, it is convenient to recall some basic
results about the smoothness of the eigenvalues of a matrix. It is known that, for analytic
perturbations, non-analyticity can only occur when eigenvalues coalesce [17, Ch. II].
Clearly, the analysis can be reduced to the problem of determining the smoothness of the
roots of a polynomial for which we have the following well-known result.

Theorem 4.1 (Theorem A in [13]). Let p(z) = zn + ∑n−1
i=0 aiz

i be a monic polynomial
with complex coefficients and with roots r1, . . . , rn. Moreover, denote by ∼ the equivalence
class on Cn defined by v1 ∼ v2 if and only if v2 is a permutation of v1. Then the function
that maps the coefficients of p(z) to its roots is a homeomorphism, when seen as a function
from Cn to Cn/ ∼.

In [13, Theorem A] the Euclidian topology on Cn is used, whereas on Cn/ ∼ the
quotient topology is employed [18, pp. 94–99]. An entirely different question is whether
one can obtain an inverse function theorem, i.e., whether one can label n continuous
functions ri(a0, . . . , an−1), i = 1, . . . , n, such that p(z) = ∏n

i=1(z − ri(a0, . . . , an−1)). In
general, the answer to this question is negative, as shown by the example p(z) = z2 − x
for a complex parameter x. Two important exceptions are discussed in [17, Section II.5.2].
First, if all the coefficients of p(z) depend continuously on a single real parameter t,
then one can pick n continuous functions of t to represent the roots [17, Theorem 5.2].
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Furthermore, if the coefficients of the polynomial depend analytically on t, then the n
functions are analytic as well. The second important exception is when all the roots are
real, or more generally, as our presentation will illustrate, when they lie on any set where
the topology induced by the Euclidean topology on C becomes an order topology, e.g., a
simple and open curve. Essentially, the key property is the ability to continuously reorder
an n-tuple. For this we introduce the reordering map:

v = {v1, . . . , vn} ∈ Rn/ ∼ 7→ χ(v) =
[
vσ(1) . . . vσ(n)

]T
∈ Rn,

where σ is any permutation of {1, . . . , n} such that vσ(1) ≥ · · · ≥ vσ(n).
Then we have the following theorem which is implicit in [17].

Lemma 4.2. The reordering map is continuous.

Proof. Let {vm} ⊂ Rn/ ∼ be any sequence satisfying limm→∞ vm = v ∈ Rn/ ∼. Denote
by ` the number of distinct entries in v, i.e., suppose that there exists w1 > · · · > w` ∈ R
are such that µk entries of v are equal to wk, with

∑`
k=1 µk = n. Let δ = mini,j |wi − wj|.

Then, since {vm} is a convergent sequence in the quotient topology, given any 0 < ε < δ,
for m large enough and for any k = 1, . . . , `, vm has exactly µk components in the open
interval Jk = (wk− ε, wk + ε). Then, for any xi ∈ Ji, xj ∈ Jj , we have xi > xj if and only
if i < j. This holds because the intervals Jk are disjoint by construction, and because the
Euclidean topology on R is the order topology induced by <. (Note that this is not true,
e.g., for C.) Therefore, for m large enough, χ(vm) is such that its first µ1 components
lie in J1, the second µ2 components lie in J2, et cetera. Hence, limm→∞ χ(vm) = χ(v),
implying that χ is continuous.

By the above results, we have the following theorem, stated (without proof) in [17,
Section II.5.7].

Theorem 4.3. Let A(x, ζ) be a matrix whose elements depend (jointly) continuously on
the real parameters (x, ζ), and such that for any (x, ζ) in a certain domain Ω ⊂ R2 all the
eigenvalues of A(x, ζ) are real. Then there exist n jointly continuous functions fj(x, ζ),
j = 1, . . . , n, that are the eigenvalues of A(x, ζ) for all (x, ζ) ∈ Ω.

Proof. For the proof it suffices to compose two continuous functions: the map from (x, ζ)
to the real coefficients of the characteristic polynomial of A, and the map from those
coefficients to the (ordered) n-tuple χ(f1(x, ζ), . . . , fn(x, ζ)) ∈ Rn of the eigenvalues of
A(x, ζ), which is continuous by [13, Theorem A] and Lemma 4.2.

Remark 4.4. Another interesting question is whether in the case that the coefficients of
a monic polynomial are jointly analytic functions of two real parameters (x, ζ), we can find
n jointly analytic functions f1(x, ζ), . . . , fn(x, ζ), that are the roots of the polynomial at
each point? The answer is again negative as the example p(z) = z2−3xz+2x2−ζ2(x−1)2

demonstrates, see [17, Section II.5.7] for further remarks and examples.
Note that, by Rellich’s Theorem 1.4, for any fixed ζ and for any polynomial whose

coefficients depend jointly analytically on x and ζ, e.g., the characteristic polynomial of an
Hermitian matrix function, we can find two eigenvalue functions that are analytic in x, and
vice versa for any fixed x we obtain analytic eigenvalue functions in ζ. Unfortunately, unlike
for complex holomorphic functions, in the real case this condition does not imply that we
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have n jointly analytic functions, as the standard counterexample [20] f(x, ζ) = 2 x ζ
x2 + ζ2 ,

f(0, 0) = 0 shows. Indeed, the latter function is separately analytic on R2, but not even
jointly continuous at (0, 0).

In the next subsection we will expand on this discussion and derive some perturbation
theory results for regular Hermitian functions.

4.2 Perturbation theory for regular self-adjoint matrix func-
tions

To derive our perturbation analysis for regular self-adjoint matrix functions, it is convenient
to introduce some further notation. Let λ ∈ Ω ⊆ R, and δ > 0 be such that J := [λ−δ, λ+
δ] ⊂ Ω. For any nonzero f(x), that is analytic in Ω and such that f(λ− δ)f(λ+ δ) 6= 0,
we define the local type of f in the interval J to be the ordered pair(

sign f(λ− δ), sign f(λ+ δ)
)
.

Note that since J is compact, the function f(x) can only have finitely many roots in J .
Observe furthermore that, by continuity, the local type of a function determines the parity
of the number of roots of odd multiplicity that f(x) has in J . It also determines the
associated sign characteristics at such roots, i.e., the sign of the first nonzero derivative
evaluated at the roots of odd multiplicities. More specifically we have the following result.

Proposition 4.5. Consider a function f(x) that is analytic in the interval J . Then, the
following statements on the sign characteristics of the roots of f in J with odd multiplicity
hold.

1. If the local type of f in J is (+,+), then f has an even number of roots of odd
multiplicity in J . Moreover, the sign characteristics at such roots (if any) alternate
in sign starting with −1, i.e., they are −1, 1,−1, . . . , 1.

2. If the local type of f in J is (+,−), then f has an odd number (in particular, at
least one) of roots of odd multiplicity in J . Moreover, the sign characteristics at
such roots alternate in sign starting with −1, i.e., they are −1, 1,−1, . . . ,−1.

3. If the local type of f in J is (−,+), then f has an odd number (in particular, at
least one) of roots of odd multiplicity in J . Moreover, the sign characteristics at
such roots alternate in sign starting with 1, i.e., they are 1,−1, 1, . . . , 1.

4. If the local type of f in J is (−,−), then f has an even number of roots of odd
multiplicity in J . Moreover, the sign characteristics at such roots (if any) alternate
in sign starting with 1, i.e., they are 1,−1, 1, . . . ,−1.

Proof. We only give a proof of item 1., as the other cases are analogous. The argument
can be best followed by considering Figure 1 below.

Since f is analytic, it is in particular continuous. Thus, each time that f has a root of
odd multiplicity at a point, say, x0 ∈ J , then it must have opposite signs in an interval
containing real numbers strictly smaller than x0 and in an interval containing real numbers
strictly larger than x0. Conversely, for any root of even multiplicity, say, x1, there exists a
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even mult.

s.c. +1

s.c. -1

f > 0 f > 0local type (+,+)

Figure 1: An analytic function f(x) having local type (+,+) in the interval J .

neighborhood of x1 such that f is constant in sign. Now suppose that f(x) has some roots
of odd multiplicity in J , as otherwise there is nothing to prove. Let r be the smallest one.
Since f(x) > 0 at the left endpoint of J , and since there are no roots of odd multiplicity
smaller than r, we have f(x) > 0 in a left neighborhood of r, and hence, f(x) < 0 in a
right neighborhood of r. Therefore, expanding f(x) = ∑∞

k=m ck(x− r)k for some odd m,
we see that necessarily cm < 0, proving that the sign characteristic at r is −1. Repeating
the argument yields the fact the sign characteristics at the roots of odd multiplicity must
alternate in sign, whereas the fact that f(x) > 0 at the right endpoint of J guarantees
that the largest such root must have sign characteristic +1, and hence, there are an even
number of roots of odd multiplicity.

Note that, generally, from the local type nothing can be inferred about the roots with
even multiplicities. Nonetheless, using Proposition 4.5, we can associate any local type
with a specific value of the sum of the sign features over all the roots of f that lie in the
interval J . The cases are summarized in Table 1.

Table 1: Rules for the local sum of sign features according to the local type.

Local type of f in J sum of sign features of the roots of f in J
(+, +) 0
(+,−) −1
(−, +) 1
(−,−) 0

The following results illustrate why the local types are a useful tool for studying the
local sum of sign features on a given interval.

Proposition 4.6. Let H(x) ∈ An(Ω) be a regular self-adjoint matrix function, and let
ηj(x) be the zeros of the polynomial p(z) = det(H(x)− zI) considered as functions of x.
Let J = [a, b] ⊂ Ω be an interval with the property that detH(a) detH(b) 6= 0. Let qi,
i = 1, . . . , 4, be the number of ηj(x) that are, resp., positive at a, negative at a, positive
at b, negative at b. Then the local sum of all the sign features of H(x) in J is equal to
q3 − q1 and to q2 − q4.

Proof. Clearly, the ηj(x) are the diagonal elements djj(x) in the Rellich decomposition of
H(x). Observe that by Rellich’s Theorem 1.4 the condition detH(a) detH(b) 6= 0 implies
ηj(a)ηj(b) 6= 0, for all j = 1, . . . , n. Denote by ν(·,·) the number of ηj(x), j = 1, . . . , n that

20



are of type (·, ·) in J . Observe that, by definition, the qi are simply related to the local
types by the following formulae, subject to the constraints q1 + q2 = q3 + q4 = n:

q1 = ν(+,+) + ν(+,−), q2 = ν(−,+) + ν(−,−),

q3 = ν(−,+) + ν(+,+), q4 = ν(+,−) + ν(−,−).

By Table 1, the local sum of the sign features of H(x) in J is equal to the number of
ηj(x) that are of type (−,+) in J minus the number of ηj(x) that are of type (+,−) in
J . The statement follows immediately.

Theorem 4.7. Let H(x) ∈ An(Ω) be regular and self-adjoint, let E(x) ∈ An(Ω) be
self-adjoint, and suppose that λ ∈ Ω ⊆ R is a real eigenvalue of H(x) with geometric
multiplicity ` ≤ n, partial multiplicities mλ

1 , . . . ,m
λ
` , and associated sign features φλ1 , . . . , φλ` .

For any ζ > 0 consider the function Ĥ(x) := H(x) + ζE(x) ∈ An(Ω). For a given interval
J ⊂ Ω λ, denote by λ̂j the eigenvalues of Ĥ(x) lying in J , each with partial multiplicities
m
λ̂j
i,j and sign features φλ̂ji,j. Then there exists an interval J such that

(i) λ ∈ J ;

(ii) for sufficiently small ζ, the following conservation law holds:

∑
i,j

φ
λ̂j
i,j =

∑̀
j=1

φλj .

Proof. Denote by ηj(x) the zeros of the polynomial p(z) = det(H(x) − zI) considered
as functions of x. Clearly these are the functions djj(x) in the Rellich decomposition
of H(x) and thus, the ηj(x) are analytic functions of x, and the sign characteristics at
λ are the signs of amλj in the series ηj(x) = ∑∞

i=mλj
ai(x − λ)i, whenever mλ

j > 0, i.e.,
λ is an eigenvalue of H(x) of partial multiplicity mλ

j . We denote these signs by ελj .
Now consider the perturbed Hermitian matrix function Ĥ(x) = H(x) + ζE(x), and let
q(z) = det(H(x) + ζE(x)− zI).

By Theorem 4.3, we know that we can label n jointly continuous functions fj(x, ζ)
such that for any (x, ζ) in Ω×R they are the roots of q(z), i.e., the eigenvalues of Ĥ(x, ζ).
Rellich’s Theorem 1.4 and the uniqueness of the set of the eigenvalues of a square matrix
guarantee the following fact.
Remark 4.8. For any fixed ζ, there are n functions η̂j(x; ζ), analytic in x, with η̂j(x; 0) :=
ηj(x); and for any x ∈ Ω, there exists a permutation σ (possibly depending on x) such
that fσ(j)(x, ζ) = η̂j(x; ζ).

Now suppose without loss of generality that ηj(λ) = 0 if and only if j ≤ `, (this can
be achieved via a relabeling of the n analytic functions ηj). Observe now that there exist
δ, δ′ such that, defining J := [λ− δ, λ+ δ] ⊂ Ω, the following conditions are satisfied.

1. For any j ≤ `,

• if mλ
j is odd and ελj = 1, then ηj(x) is of local type (−,+) in J ;

• if mλ
j is even and ελj = 1, then ηj(x) is of local type (+,+) in J ;

21



• if mλ
j is odd and ελj = −1, ηj(x) is of local type (+,−) in J ;

• if mλ
j is even and ελj = −1, then ηj(x) is of local type (−,−) in J .

2. For any j > `,

• if ηj(λ) > 0, then ηj(x) is of local type (+,+) in J ;
• if ηj(λ) < 0, then ηj(x) is of local type (−,−) in J .

3. For any ζ < δ′, there are two permutations σ− and σ+ such that for any j = 1, . . . , n
the following conditions hold:

• sign fσ−(j)(λ− δ, ζ) = sign ηj(λ− δ), and
• sign fσ+(j)(λ+ δ, ζ) = sign ηj(λ+ δ).

That condition 2 can be satisfied follows by continuity in x: since for any j > ` ηj(λ) 6= 0,
there exists a δj such that |x− λ| < δj ⇒ ηj(x)ηj(λ) > 0. Similarly, that for a fixed j ≤ `
there exists a δj such that condition 1 can be satisfied follows from the analyticity of ηj(x)
and Definition 1.6. Note that we assume that, for all j, λ is a root of finite multiplicity for
ηj(x), i.e., ηj(x) 6≡ 0. If this is not the case, then all the coefficients in the Taylor series
are zero, and clearly no δ can be found such that ηj(x) is of any local type. Thus, we can
set δ := minj δj.

Finally, the existence of δ′ follows by continuity in ζ of the fj(x, ζ), by Remark 4.8,
that implies that there exist permutations σ− and σ+ such that ηj(λ− δ) = fσ−(j)(λ− δ, 0)
and ηj(λ+ δ) = fσ+(j)(λ+ δ, 0).

Let us now fix ζ0 ∈ [0, δ′). Let η̂j(x; ζ0) denote the zeros of det(H(x) + ζ0E(x)− zI).
By Remark 4.8, we know that for any fixed x ∈ J we can find a permutation σ′ such that
η̂j(x; ζ0) = fσ′(j)(x, ζ0).

Consider now the quantities qi, defined as in the statement of Proposition 4.6 on
η̂j(x; ζ) with J = [λ− δ, λ+ δ]. Clearly, qi are integer-valued functions of ζ. Observe that

q1(ζ) =
∑

j: η̂j(λ−δ;ζ)>0
1, q2(ζ) =

∑
j: η̂j(λ−δ;ζ)<0

1,

q3(ζ) =
∑

j: η̂j(λ+δ;ζ)>0
1, q4(ζ) =

∑
j: η̂j(λ+δ;ζ)<0

1.

Hence, by the argument above and by conditions 2 and 3, qi(0) = qi(ζ0) for any 0 ≤ ζ0 < δ′.
Invoking Proposition 4.6 concludes the proof.

Remark 4.9. We stress once more that it is crucial here that any ηj(x) such that
ηj(λ) = 0 has a zero of finite multiplicity at λ, i.e., ηj(x) is not identically zero. This is
equivalent to the assumption that H(x) is regular and is used to prove condition 2. in
the proof of Theorem 4.7. If this does not hold, i.e., suppose without loss of generality
η1(x) ≡ 0, then η1(x, ζ) may assume an arbitrary sign for all x ∈ Ω, suggesting that no
local conservation laws are possible. Indeed, this is illustrated by the following example
which is a Hermitian variant of an unstructured example that appeared in [8, Equation 2].
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Example 4.10. Let H(x) =
[
x
0

0
0

]
. Then η1(x) = x, η2(x) = 0. The only eigenvalue is

λ = 0, with geometric multiplicity 1, partial multiplicity 1 and sign feature 1. Consider the
perturbation E(x) =

[
0

x−1
x−1

0

]
. Then one can check that 2f1(x, ζ) = x+

√
x2 + 4ζ2(x− 1)2

and 2f2(x, ζ) = x−
√
x2 + 4ζ2(x− 1)2. For any arbitrarily small ζ > 0 we see that neither

f1(x, ζ) nor f2(x, ζ) have a root in a neighborhood of x = 0. Moreover, f2(x, ζ) has a root
of multiplicity 2 at x = 1. Therefore, the sum of the sign features is not locally preserved
at 0.

Remark 4.11. One may wonder if the sum of sign features associated with each partial
multiplicity is locally preserved. The answer is clearly negative, as is illustrated by the
Hermitian matrix function

[
0
x
x
0

]
, which has partial multiplicities 1, 1 at the eigenvalue 0,

with sign features 1 and −1. We can perturb it to
[
ζ
x
x
0

]
which for any ζ > 0 has partial

multiplicity 2 at the eigenvalue 0, with sign feature 0.

Finally, the subtleties described in Section 4.1 are key in arguing that, in a sense made
precise by Theorem 4.12, the geometric multiplicity of an eigenvalue cannot locally increase
by a small perturbation. Note that Theorem 4.12 is based on Theorem 4.3, and hence,
holds more generally for matrices (not necessarily Hermitian) depending continuously on
a parameter. However, for simplicity we state it only for the special case that we need.

Theorem 4.12. With the notation of Theorem 4.7, denote by η̂j(x; ζ) the eigenvalue
functions of H(x) + ζE(x). Then for small enough ζ there exists an interval J (ζ)
containing λ such that the number of η̂j(x; ζ) that have roots in J (ζ) is not larger than `,
where ` is the geometric multiplicity of λ as an eigenvalue of the regular analytic matrix
function H(x).

Proof. Using the notation of the proof of Theorem 4.7, suppose without loss of generality
that ηj(λ) = 0 if and only if j ≤ `. Let ρ := minj>` |ηj(λ)| > 0. By Theorem 4.3, the
eigenvalues of H(x) + ζE(x) are jointly continuous in ζ and x. Hence, by Remark 4.8, we
deduce that there exists δ > 0 such that, for all x, ζ satisfying (x− λ)2 + ζ2 < δ2, and for
all j > `, there is a permutation σ yielding |fσ(j)(x, ζ)| > ρ/2.

It follows that for any ζ < δ there is an interval J (ζ) containing λ with the property
that at most ` eigenvalue functions of H(x) + ζE(x) can have roots in the interval
J (ζ).

We stress that the results in this section imply that, at a finite real point, a set of real
eigenvalues can be removed from the real line by a perturbation if and only if the sum of
their sign features is 0. This observation will be important in the next subsection.

4.3 Perturbation theory of infinite eigenvalues for regular Her-
mitian matrix polynomials

In this section we discuss the local invariants at infinity for a regular Hermitian matrix
polynomial P (x). Assume that the perturbation E(x) is also polynomial. Note that
in this situation the most natural choice for the grade might not be degP (x), but
max(degP (x), degE(x)), see also [28].

By Theorem 4.7, we know that, for any λ ∈ R, there exists an interval J containing
λ such that, for ζ small enough, the sum of the sign features for all eigenvalues of the
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perturbed polynomial P (x) + ζE(x) that lie in J is equal to the sum of the sign features
over all the partial multiplicities of λ seen as an eigenvalue of P (x).

To simplify expressions, we rephrase this property as the sum is locally preserved on
R. The question is whether we can extend this statement to a neighborhood of ∞, or at
least whether we can find another local invariant at infinity.

If the grade is even, then this is straightforward. By Theorem 4.7 applied to S(x) =
− revg P (x), the sign features at 0 of S(x) are locally preserved. But by Theorem 2.4 and
Theorem 2.5, the sign features of small eigenvalues of a perturbed S(x)− ζ revg E(x) are
precisely the same of those of large eigenvalues of P (x) + ζE(x). Hence, the sum of the
sign features of P (x) is preserved in a neighborhood of infinity, i.e., in (−∞,−M)∪(M,∞)
for sufficiently large M > 0, and thus we have the following theorem.

Theorem 4.13. If P (x) is a regular Hermitian matrix polynomial of even grade, then
the sum of the sign features is locally preserved on R ∪ {∞}, i.e., it is locally preserved at
any λ ∈ R and at λ =∞ as well.

On the other hand, if the grade is odd, it is hopeless to have a local conservation of the
sign features. Indeed, going to the reversal, what must be locally preserved is the sum of
sign characteristics (or sign features) associated with the odd multiplicities corresponding
to S(x). In particular, for the eigenvalue zero of S(x) and the eigenvalue ∞ of P (x), the
sign features corresponding to the former are associated with odd partial multiplicities
whereas those corresponding to the latter are associated with even partial multiplicities.
They are totally different. The mapping laws of the sign characteristics prescribed in
Theorem 2.4 and Theorem 2.5 depend on which neighborhood of infinity (left or right)
one considers. The only way to express a local conservation rule in a neighborhood of
infinity is to go back to the sign features of the reversal S(x). Unfortunately this does
not yield a statement as nice as in the case of even grade.

Theorem 4.14. Let P (x) be a regular Hermitian matrix polynomial of odd grade and let
the sign characteristic at infinity be defined as in Definition 1.10. Then in a neighborhood
of ∞ the sum ∑

λ∈ΛR(P ),λ>0

∑
mλi odd

ελi −
∑

λ∈ΛR(P ),λ<0

∑
mλi odd

ελi +
∑

m∞i odd
ε∞i

is locally preserved.
In other words, given any Hermitian polynomial E(x) of the same grade as P (x), there

exists M > 0 such that, for any small enough ζ, if ελ̂i are the sign characteristics associated
with the eigenvalue λ̂ arising from a small Hermitian perturbation P̂ := P (x) + ζE(x) and
ε∞i are the sign characteristics of P (x) associated with the eigenvalue ∞, then we have∑

λ̂∈Λ(P̂ ),λ̂>M

∑
mλ̂i odd

ελ̂i −
∑

λ̂∈Λ(P̂ ),λ̂<−M

∑
mλ̂i odd

ελ̂i +
∑

m̂∞i odd
ε̂∞i =

∑
m∞i odd

ε∞i ,

where in abuse of notation ε̂∞i denotes the sign characteristics of the eigenvalues of the
perturbed problem that stay at ∞ and m̂∞i is the corresponding partial multiplicity.

Proof. By definition, the sign characteristics at infinity of P (x) are those of S(y) =
−ygP (1/y) at 0. Applying Theorems 2.4 and 2.5, we see that for an odd partial
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multiplicity m the sign characteristics of P (x) at a large λ are equal to (resp. opposite to)
those of S(y) at a small λ−1 if and only if λ > 0 (resp. λ < 0). Applying Theorem 4.7 to
S(y) and the appropriate neighborhood of 0 (that is mapped to a neighborhood of infinity
for P (x)), and recalling that the sign features correspond to the sign characteristics for
the odd partial multiplicities (and are 0 for the even partial multiplicities), the statement
follows.

The presented analysis shows that our definition of sign features, that lead to the
global constraint of Theorem 3.4, fits well with the local conservation rule at infinity if and
only if the grade is even. When the grade is odd, things are more complicated. This is not
a defect of our definition, but a necessary consequence of the fact that, for odd grade, the
signature of the leading matrix coefficient is involved in the signature constraint theorem.
This makes it impossible to obtain a definition that works well both globally and locally.

There are two possible ways out of this global/local dichotomy for odd grade Hermitian
matrix polynomials. Either one always forces the grade to be even by adding another zero
coefficient, at the price of allowing a larger set of perturbations (including perturbation
to the zero leading matrix coefficient), or one uses Theorem 4.14, at the price of having a
much less elegant and more complicated rule. We give a few examples to illustrate these
facts.

Example 4.15. Consider

P (x) =

x
3 0 0

0 1 0
0 0 x


of grade 3. Note that P (x) has an eigenvalue 0 of multiplicity 3 with sign feature 1, an
eigenvalue 0 of multiplicity 1 with sign feature 1, an eigenvalue ∞ of multiplicity 3 with
sign feature 0 and sign characteristic −1, and an eigenvalue ∞ of multiplicity 2 with sign
feature −1. As shown in Theorem 3.4, the global sum of the sign features is 1. However,
any perturbation, however small, can change the signature of the leading matrix coefficient.
Suppose that there is a finite open cover of the compactification of the real line such that
in each open subset of the cover there is a local conservation rule for the sum of the sign
features. This would violate Theorem 3.4: to see this, take a perturbation that changes
the signature of the leading matrix coefficient. Hence, there cannot be such an open cover.
On the other hand, by Theorem 4.7, the sum of sign features is locally preserved on all
R. Therefore, there must be a possible exception at infinity, i.e., there cannot be any
open subset of infinity that allows for a local conservation law of sign features. This is
illustrated by

P̂ (x) =

x
3 0 0

0 1− ζ3x3 0
0 0 x− ζ2x3

 .
Note that neither the partial multiplicities nor the sign features of the zero eigenvalue
are changed by this particular perturbation. However, for any ζ > 0, there exist two real
eigenvalues 1

ζ
each of partial multiplicity 1 with sign feature −1, and a real eigenvalue

(−1
ζ
) of partial multiplicity 1 with sign feature −1. The global sum of sign features is

now −1, as expected, since the signature of the leading matrix coefficient has changed.
Yet, no matter how small ζ > 0, the sum of sign features in a neighborhood of infinity
is −3 6= −1. Note that this example is coherent with Theorem 4.14, since −1

ζ
< 0 and
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hence we must multiply its sign characteristics by −1 in the summation of the statement
of Theorem 4.14.

If we had picked even grade, say, 4, for P (x) and P̂ (x), then we would have a local
conservation law at infinity of sign features, as predicted by Theorem 4.13. Indeed with
this choice of the grade, the sum of sign features at infinity for P is −2, whereas P̂ (x)
has three extra simple eigenvalues at infinity, with sign features −1, 1, and 1, so that in a
neighborhood of infinity the sum is still −2.

Example 4.16. Let p(x) = 1 have grade 1, i.e., it has a simple infinite eigenvalue with
sign feature 0, and sign characteristic −1. Then any perturbation p̂(x) = 1 + ζ0 + ζ1x
must have a real eigenvalue. Note that the product of the sign of the perturbed eigenvalue
and its sign characteristic must be −1, coherently with Theorem 4.14.

Suppose now that we take the grade to be 2, then P has a double infinite eigenvalue
with sign feature 0. It can be removed from the compactification of the real line by a
degree 2 perturbation such as p̂(x) = 1 + ζx2, ζ > 0. The reason why a degree 1, but
grade 2, perturbation cannot remove it is that such a perturbation must still have a
simple infinite eigenvalue, and hence, a complex conjugate pair of eigenvalues cannot be
produced, i.e., it must also have another large real eigenvalue, of opposite sign feature.

Example 4.17. Let p(x) = x of grade 3, then it has a double infinite eigenvalue with sign
feature −1 and a simple zero eigenvalue with sign feature 1. However, the perturbation
p̂(x) = x+ ζx3 (ζ > 0) has only one real eigenvalue at 0 and the double infinite eigenvalue
has been removed from the compactification of the real line, in spite of having nonzero
sign feature, but coherently with Theorem 4.14. Considering the grade to be 4, then
originally there was a triple infinite eigenvalue, with sign feature −1. In this case it is
impossible to remove all the three eigenvalues (counting multiplicity), although of course
we may remove two of them while still locally preserving the sum of sign features: this is
precisely what happens with p̂(x).

4.4 Coalescence of simple real eigenvalues
An application of the discussed theory is the analysis of two nearby simple eigenvalues
colliding at a point, in particular the question whether they can be removed from the
compactification of the real line. Let us analyze the situation when the point is infinity.
When the grade is even, infinity is not special at all, so the rule is as usual, that they can
be removed if and only if the sum of their sign features, or, equivalently in this case, their
sign characteristics is 0, as prescribed by Theorem 4.13. For odd grade, we can apply the
more complicated Theorem 4.14 to obtain the following cases.

• If both eigenvalues are finite, large and having the same sign, then they can be
removed if and only if the sum of their sign characteristics is 0;

• If both eigenvalues are finite and large, one being positive and the other being
negative, then they can be removed if and only if the sum of their sign characteristics
is nonzero i.e. either 2 or −2;

• If one eigenvalue is infinite and the other is finite, large and positive, then they can
be removed if and only if the sum of their sign characteristics is 0;
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• If one eigenvalue is infinite and the other is finite, large, and negative, then they can
be removed if and only if the sum of their sign characteristic is nonzero, i.e., ±2.

Note that in this case it is the sign characteristics at infinity, and not the sign
feature, that determines what happens. This is because with odd grade there is no local
conservation of the sign feature at infinity, and hence, one is forced to go to the reversal,
where the sign features at zero correspond to the sign characteristics at zero.

Once again, the conclusion is that giving a simple local conservation law at infinity
is not possible. One must either always see things as even grade, or alternatively, rely
heavily on Theorems 2.4 and 2.5.

5 Conclusions
We have studied a systematic extension of the definition of sign characteristic for Hermitian
matrix polynomials to the eigenvalue∞. The goal was to achieve a concept that is uniform
with the one for finite eigenvalues and that stays valid under small perturbations. For
matrix polynomials of even grade (degree) we have realized this goal, while for odd grade
we have argued that the task seems to be not possible, except if one resorts to increasing
the grade to an even number. We have studied the change of sign characteristics under
analytic reparametrizations and multiplication by scalar functions, and we have shown a
sign constraint theorem and studied the invariance of this result under perturbations.
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