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EXTENDED AFFINE WEYL GROUPS, THE
BAUM-CONNES CORRESPONDENCE AND LANGLANDS

DUALITY

GRAHAM A. NIBLO, ROGER PLYMEN AND NICK WRIGHT

Abstract. In this paper we consider the Baum-Connes correspondence
for the a�ne and extended a�ne Weyl groups of a compact connected
semisimple Lie group. We show that the Baum-Connes correspondence
in this context arises from Langlands duality for the Lie group.

Contents

1. Introduction 1
2. The example of SU3: the (3, 3, 3)-triangle group 3
3. Langlands duality 13
3.1. Complex reductive groups 13
3.2. Compact semisimple groups 14
3.3. The nodal group 16
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1. Introduction

Throughout this paper G will denote a compact connected semisimple
Lie group with maximal torus T , whose Lie algebra will be denoted t. We
will examine the Baum-Connes correspondence in the context of a�ne and
extended a�ne Weyl groups associated with G, which can be realised as
groups of a�ne isometries of the Lie algebra t. The assembly map is an
isomorphism in this context, cf. [HK]. The domain of the assembly map for
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the extended a�ne Weyl group W 0
a

is KK⇤
W

0
a
(C0(t), C) which we identify

with KK⇤
W

(C(T ), C) where W is the Weyl group of G, see Remark 6.3.
The group W 0

a

is the semidirect product �o W where � is the lattice of
translations in t corresponding to ⇡1(T ). The commutative algebra C⇤

r

� is
identified with C(b�) where b� denotes the Pontryagin dual of �. We identify
the right hand side of the assembly map KK⇤(C, C⇤

r

W 0
a

) with the equivariant
KK-group KK

W

(C, C(b�)). Since b� is a torus of the same dimension as T
one might be tempted to think that the Baum-Connes correspondence is an
isomorphism between the W -equivariant K-homology and K-theory of the
torus T . While there is such an isomorphism (rationally) by the Universal
Coe�cients Theorem, this is not the Baum-Connes correspondence.

Although b� is a torus of the same dimension as T , there is in general no
W -equivariant identification of the two tori. A very illustrative example is
furnished by the Lie group SU3 whose extended a�ne Weyl group (which in
this case is its a�ne Weyl group) is the (3, 3, 3)-triangle group acting on the
plane. We find this an extremely useful way of visualising the Baum-Connes
conjecture and examine it in detail in Section 2.

We will see in this example that the left- and right-hand sides of the
Baum-Connes correspondence look very di↵erent and the Baum-Connes iso-
morphism might almost appear coincidental in this case. This ‘coincidence’
however can be explained by T -duality between the tori T and b�. At the
level of Lie groups b� is (equivariantly) the maximal torus T_ of the Lang-
lands dual G_ of G. We construct a W -equivariant Poincaré duality in
K-theory from T to T_, which can be viewed as providing a geometrical
proof of the Baum-Connes correspondence in this context:

Theorem 1.1. Let G be a compact connected semisimple Lie group, let
W 0

a

= W 0
a

(G) be the extended a�ne Weyl group attached to G. Then we
have the following commutative diagram:

KK⇤
W

0
a
(C0(t), C) µ������������! KK⇤(C, C⇤

r

W 0
a

)
?

?

y

⇠= ⇠=
x

?

?

Fourier-Pontryagin

duality

KK⇤
W

(C(T ), C)
⇠=��������������!

Poincaré-Langlands

duality

KK⇤
W

(C, C(T_))

where µ is the Baum-Connes assembly map.

The duality between G and G_ is further amplified by the following the-
orem.

Theorem 1.2. Let G be a compact connected semisimple Lie group and G_

its Langlands dual. Let W 0
a

(G), W 0
a

(G_) denote the extended a�ne Weyl
groups of G and G_ respectively. Then there is a rational isomorphism

K⇤(C⇤
r

(W 0
a

(G))) ⇠= K⇤(C⇤
r

(W 0
a

(G_))).
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Corollary 1.3. Let W
a

(G), W
a

(G_) be the a�ne Weyl groups of G, G_. If
G is of adjoint type then rationally

K⇤(C⇤
r

(W 0
a

(G))) ⇠= K⇤(C⇤
r

(W
a

(G_))).

If additionally G is of type A
n

, D
n

, E6, E7, E8, F4, G2 then rationally

K⇤(C⇤
r

(W 0
a

(G))) ⇠= K⇤(C⇤
r

(W
a

(G))).

The paper is structured as follows. In Section 2 we consider in detail our
motivating example of the (3, 3, 3)-triangle group which arises as the a�ne
Weyl group of SU3. In Section 3 we recall the definition of Langlands duality
for compact semisimple Lie groups via their complexifications. In particular
we identify the reduced C⇤-algebra of the nodal group for T as the algebra
of functions on the maximal torus T_ of the Langlands dual group. In the
main section, Section 4, we construct our Poincaré duality in KK-theory
between the algebras C(T ) and C(T_). We recall the definitions of a�ne
and extended a�ne Weyl groups in Section 5 in preparation to prove, in
Section 6, the main theorems stated above.

We would like to thank Maarten Solleveld for his helpful comments on
the first version of this paper.

2. The example of SU3: the (3, 3, 3)-triangle group

For a compact connected semisimple Lie group G the Weyl group W is a
finite Coxeter group which acts linearly on the Lie algebra t of a maximal
torus T . The extended a�ne Weyl group W 0

a

of G is the semidirect product
of a W -invariant lattice � in t by W . The a�ne Weyl group W

a

is the
semidirect product of a W -invariant sublattice N of � by the group W ,
where the index of N in � is the order of ⇡1(G). In particular for SU3,
which is simply connected, N = � and W

a

= W 0
a

. This group is the (3, 3, 3)-
triangle group.

For the quotient PSU3 = SU3/C3 the lattice N remains the same as for
SU3 while the lattice � now contains N as an index 3 sublattice. In this
section we will reserve the notation � for the �-lattice of PSU3.

We illustrate the content of Theorems 1.1,1.2 and Corollary 1.3 for SU3

and PSU3 by considering in detail the group C⇤-algebras of the correspond-
ing a�ne and extended a�ne Weyl groups. After posting the initial version
of this paper it was drawn to our attention by Maarten Solleveld that the
K-theory groups appearing in this section were computed in his thesis, [S],
using similar methods but with slightly di↵erent exact sequences of algebras.
We refer the reader to the thesis for a number of other interesting examples.

A maximal torus T for SU3 is given by the diagonal matrices with entries
↵,�, � in U := {� 2 C : |�| = 1} such that ↵�� = 1. The exponential map
allows us to identify the universal cover of T with the tangent plane

t = {(x, y, z) 2 R

3 : x + y + z = 0}.
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Explicitly we use the map

(x, y, z) 7!

0

@

e2⇡ix

e2⇡iy

e2⇡iz

1

A

and we identify the torus with the quotient of this plane by the group

N = {(a, b, c) 2 Z

3 : a + b + c = 0}.
A compact fundamental domain for the action is given by the hexagon

X = {(x, y, z) 2 t : |x� y|, |y � z|, |z � x|  1}
with vertices ±(2

3 ,�1
3 ,�1

3),±(�1
3 , 2

3 ,�1
3),±(�1

3 ,�1
3 , 2

3). The torus is ob-
tained from the hexagon by identifying opposite edges.

The Weyl group of SU3 is isomorphic to D3 and can be identified with
the group of matrices generated by

0

@

0 1
1 0

�1

1

A and

0

@

�1
0 1
1 0

1

A .

The conjugation action of W on T corresponds to the restriction to t of
the permutation representation of D3

⇠= S3 on R

3. The group W
a

= W 0
a

for SU3 is the semidirect product N o W which acts a�nely on t. (The
expert reader will note that, despite the notation N for the lattice, we have
formally constructed W 0

a

.)
Each transposition in W = S3 gives a reflection of the plane fixing a pair

of vertices of the hexagon X. The mirror lines thus divide X into equilateral
triangles, any of which is a fundamental domain for the action of N o W on
t. This allows us to identify N o W with the (3, 3, 3)-triangle group,

hs1, s2, s3|s2
i

= 1, (s
i

s
j

)3 = 1, i 6= ji.
The generators s1, s2 generate the Weyl group W while s3 corresponds to
a reflection in the third face of an equilateral triangle and is given by the
composition of a linear reflection and a translation.

The action of N o W on t is a universal example for proper actions and
hence the N o W -equivariant K-homology of t is the left-hand-side of the
Baum-Connes assembly map for this group.

The right-hand-side of the Baum-Connes assembly map is the K-theory
of C⇤

r

(NoW ) ⇠= (C⇤
r

N)o
r

W . By Fourier-Pontryagin duality the C⇤-algebra
C⇤

r

N is isomorphic to the algebra of continuous functions on the torus bN .
We will explicitly identify this torus and the action of the Weyl group W on
it in this example.

The dual of Z

3 is naturally identified with the 3-torus U3. Restricting a
character of Z

3 to N yields a character of N and since the inclusion of N into
Z

3 splits we obtain all characters of N in this way. The dual of N is therefore
a quotient of the 3-torus. Given a triple (↵,�, �) 2 U3 the corresponding
character on N is given by (a, b, c) 7! ↵a�b�c and since a + b + c = 0 for
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elements of N two such triples yield the same character precisely when they
are projectively equivalent. Thus bN is identified with the quotient of U3 by
the diagonal action of U.

The tangent space of bN is the quotient of R

3 (strictly the dual of R

3)
by the diagonal action of R. This is canonically the dual of t, however
since t provides a transversal to the diagonal action we can identify the
tangent space t

⇤ of bN with t. The character space bN is thus identified
as the quotient of t by some lattice which we will denote by �. We will
now identify �. For a triple (x, y, z) 2 R

3 let �(x,y,z) : N ! U denote
the character corresponding to (e2⇡ix, e2⇡iy, e2⇡iz). For (a, b, c) 2 N , that is
a, b, c integers with a + b + c = 0, we have

�(x,y,z)(a, b, c) = e2⇡i(xa+yb+zc) = e2⇡i((x�z)a+(y�z)b).

The lattice � consists of those triples (x, y, z) 2 R

3 such that �(x,y,z) gives the
trivial character on N . Thus � consists of triples (x, y, z) with x+ y + z = 0
and x = y = z modulo Z. This is precisely the kernel of the exponential
map from t to the Lie group PSU3, justifying our choice of notation �.

We note that � is the lattice generated by the vertices of X:

±(2
3 ,�1

3 ,�1
3),±(�1

3 , 2
3 ,�1

3),±(�1
3 ,�1

3 , 2
3).

A fundamental domain for the action of � on t is given by the hexagon

X_ = {(x, y, z) 2 t : |x|, |y|, |z|  1
3
}.

This has vertices ±(1
3 ,�1

3 , 0), ±(0, 1
3 ,�1

3), ±(�1
3 , 0, 1

3) and again the torus
is obtained by identifying opposing edges.

We will now show that the action of W on t descends to the dual action
of W on bN = t/�. The dual action is defined by (w · �)((a, b, c)) = �(w�1 ·
(a, b, c)). In particular, for � = �(x,y,z) we have

(w · �(x,y,z))((a, b, c)) = �(x,y,z)(w�1 · (a, b, c)) = e2⇡ih(x,y,z),w�1·(a,b,c)i

where h�,�i denotes the standard inner product on R

3. Since the action of
W on R

3 is isometric we have

e2⇡ih(x,y,z),w�1·(a,b,c)i = e2⇡ihw·(x,y,z),(a,b,c)i = �
w·(x,y,z)((a, b, c))

so w · �(x, y, z) = �
w·(x,y,z) as required.

We note that the reflection lines on the hexagon X_ now bisect the edges
of the hexagon, see Figure 1. Hence if for the moment we identify the two
hexagons we have two di↵erent actions of W on the hexagon corresponding
to the two non-conjugate embeddings of D3 in D6.

The orbifold quotients of the tori T and bN by W are illustrated in Figure
2. These may also be viewed as the orbifold quotients of t by N o W and
�o W respectively. Since � is the kernel of the exponential map from t to
PSU3, the latter of these groups is the extended a�ne Weyl group of PSU3.
We note that the quotient of T by W has three W -fixed points while the
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Figure 1. The action of W on the hexagons X and X_.

D3 D3

D3

Z2

Z2

Z2
Z3

D3
Z2

W �
a = ⇡orb

1 = � o W Wa = ⇡orb
1 = N o W

Figure 2. The orbifold quotients of t by �o W and N o W .

quotient of bN by W has only one. On the other hand bN has C3-isotropy at
the cone point, while T has no points with C3-isotropy. In particular we see
that there is no W -equivariant identification of the two tori.

The right-hand-side of the assembly map for N o W is the K-theory of
C⇤

r

(N oW ). The preceding discussion allows us to identify this as C( bN)o

r

W ⇠= C(t/�)o

r

W . Hence the right-hand-side is closely related to the action
of the group � o W on the plane t, indeed the group C⇤-algebra is Morita
equivalent to C0(t) o

r

(�o W ). Given that the left-hand-side is determined
by the action of a di↵erent group (N o W ) on t the appearance of �o W in
our description of the right-hand-side is unexpected. This illustrates and is
explained by Theorem 1.1.
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We will now proceed to compute explicitly the right-hand side of the
assembly map for the triangle group. We will do so by identifying the algebra
C(t/�) o

r

W as a subalgebra of the matrix algebra M6(C(�)) where �
denotes the equilateral triangle with vertices (0, 0, 0), (1

3 , 1
3 ,�2

3), (2
3 ,�1

3 ,�1
3)

(which is a fundamental domain for the action of W on X).
We begin with the following lemma.

Lemma 2.1. Let W be a finite group and A a W -C⇤-algebra. Equip the
algebra B(`2(W )) with a W -action defined by w · S = ⇢(w)S⇢(w)⇤ where ⇢
is the right-regular representation, that is ⇢(w)�

x

= �
xw

�1. Then

A o

r

W ' (A⌦ B(`2(W )))W

where W acts diagonally on the tensor product.

Proof. Define � : C(t/�) o

r

W ! C(t/�)⌦ B(`2(W )) as follows. For a 2 A
and w 2W we define

�(a) =
X

w2W

w�1 · a⌦ p
w

�([w]) = 1⌦ �(w)

where � denotes the left-regular representation and p
w

denotes the rank-one
projection onto �

w

2 `2(W ). It is straightforward to verify that this extends
to a ⇤-homomorphism from Ao

r

W to A⌦B(`2(W )). The image of � is then
contained in the W -invariant part of A⌦B(`2(W )) where W acts diagonally
on the tensor product. To see this we note that for u 2W we have

u·(�(a)) =
X

w2W

u·(w�1 ·a)⌦⇢(u)p
w

⇢(u)⇤ =
X

w2W

(wu�1)�1 ·a⌦p
wu

�1 = �(a)

while it is clear that �([w]) is W -invariant.
To see that the map � is an isomorphism onto the W -invariant part

of A ⌦ B(`2(W )) we note that its inverse can be constructed as follows.
Identifying A⌦ p

e

B(`2(W ))p
e

with A⌦ C = A we have

��1(a⌦ S) =
X

u2W

(a⌦ p
e

S�(u)⇤p
e

)[u]

which is clearly a left-inverse to � and is also a right-inverse on W -invariant
elements of A⌦ B(`2(W )). ⇤

From the lemma we have an isomorphism

� : C(t/�) o

r

W ! (C(t/�)⌦ B(`2(W )))W .

Now consider the map from � to the torus t/�. This induces a restriction
map  from (C(t/�)⌦B(`2(W )))W to C(�)⌦B(`2(W )) and since the action
of W on � covers X_ (indeed it covers the whole of X) this restriction map
is injective. We note that the image of � in the torus t/� is preserved by the
cyclic subgroup C3 of W generated by s1s2 (cf. Figure 3). This action lifts
to an action of C3 on � and elements of the image of  are C3-invariant,
where C3 acts diagonally on the tensor product C(�)⌦ B(`2(W )).
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Figure 3. � and the intersections of its translates with X_.

Moreover for a point on the boundary of � the image in t/� is invariant
under one or more of the reflections s1, s2, s1s2s1 and hence the value of the
function at that point is also invariant under that reflection. In particular at
a vertex of � the value is a W -invariant operator on `2(W ). This combined
with the C3 invariance implies automatically that the values at the three
vertices agree, which indeed they must as the three vertices map to a single
point in the torus.

To summarise, the composition  �� gives an isomorphism from C⇤
r

(N o

W ) to the subalgebra E of (C(�)⌦ B(`2(W )))C3 of functions such that
(A) the values at the vertices of the triangle are W -invariant operators

on `2(W ) and
(B) the values on an edge whose image in the torus is stabilised by s 2

{s1, s2, s1s2s1} are hsi-invariant operators on `2(W ).
To compute the K-theory of E we consider the ideal I = (C0(��) ⌦

B(`2(W )))C3 in E, where �� denotes the interior of �. (Note that the
additional invariance conditions applied to E relate to the boundary and
hence are automatic for the ideal.) This fits into a short exact sequence

(C0(��)⌦B(`2(W )))C3 ,! (C(�)⌦B(`2(W )))C3 ⇣ (C(@�)⌦B(`2(W )))C3

where @� denote the boundary of the triangle. The C3-equivariant contrac-
tion of the triangle onto its barycentre induces a homotopy equivalence from
the middle term to B(`2(W ))C3 . This in turn is Morita equaivalent to C[C3]
hence its K-theory is Z

3 in dimension 0 and zero in dimension 1.

Remark 2.2. The quotient term can be identified with B(`2(W ))-valued func-
tions on a single edge of the triangle such that the values at the ends di↵er
by the action of s1s2 2 C3. Specifically these operators are conjugate by
⇢(s1s2). Since this operator is homotopic to the identity the quotient alge-
bra is isomorphic to C(@�/C3)⌦ B(`2(W )) and hence has the K-theory of
a circle, i.e. K0 = K1 = Z.

We thus obtain the following 6-term exact sequence.
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(1)

K0(I) ����! Z

3 ����! Z

x

?

?

?

?

y

Z  ���� 0  ���� K1(I)

The map Z

3 ! Z is the map induced on K-theory from the composition

B(`2(W ))C3 !(C(�)⌦ B(`2(W )))C3

! (C(@�)⌦ B(`2(W )))C3 ! C(@�/C3)⌦ B(`2(W ))

where the first map is inclusion as constant functions, the second is re-
striction and the third is the identification given in Remark 2.2. Since the
conjugation by ⇢(s1s2) fixes elements of B(`2(W ))C3 the overall composition
is given by the inclusion of B(`2(W ))C3 as constant C3-invariant functions
in C(@�/C3)⌦ B(`2(W )).

Taking the generators of K0(C(C3)) to be the rank one projections cor-
responding to the characters of C3, these each map to constant rank-1-
projection-valued functions. Hence each generator of K0(C(C3)) = Z

3 maps
to the generator of K0(C(@�/C3)⌦B(`2(W ))) = Z. We thus see that K1(I)
is zero (since Z

3 surjects onto Z) while K0(I) = Z � Z

2. We will see that
it is the cokernel Z

2 of the connecting map Z ! K0(I) that contributes to
K0(E).

We now move on to the K-theory of the quotient E/I. This quotient is the
subalgebra of (C(@�)⌦B(`2(W )))C3 consisting of functions whose value at
each vertex is W -invariant and whose value along each edge is hsi invariant
where s denotes the reflection in the edge. Again this can be identified with
certain B(`2(W ))-valued functions on a single edge of the triangle. Since
the C3-action on the triangle takes one vertex of the edge to the other,
the operator appearing at the second vertex is obtain by conjugating the
operator at the first vertex by ⇢(s1s2). However since the operators at each
vertex are invariant under ⇢(W )-conjugation, this conjugation is trivial and
so the two operators agree.

Thus E/I is identified as B(`2(W ))hsi-valued functions on [0, 1] whose
values at the endpoints agree and are W -invariant operators. We therefore
have a short exact sequence

0! C0(0, 1)⌦ B(`2(W ))hsi ! E/I ! B(`2(W ))W ! 0.

This short exact sequence is split, by lifting B(`2(W ))W to constant functions
on [0, 1] hence

K0(E/I) = K0(C0(0, 1)⌦ B(`2(W ))hsi)�K0(B(`2(W ))W ) = 0�K0(C[W ]) = Z

3

K1(E/I) = K1(C0(0, 1)⌦ B(`2(W ))hsi)�K1(B(`2(W ))W ) = K0(C[hsi])� 0 = Z

2

The short exact sequence

0! I ! E ! E/I ! 0
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now yields the following 6-term exact sequence.
K0(I) = Z

3 ����! K0(E) ����! K0(E/I) = Z

3

x

?

?

?

?

y

K1(E/I) = Z

2  ���� K1(E)  ���� K1(I) = 0
The connecting map K1(E/I)! K0(I) factors through the connecting map
K1((C(@�) ⌦ B(`2(W )))C3) ! K0(I) from Equation 1 which we saw is
an injection. The map from E/I to C(@�) ⌦ B(`2(W )))C3 is the inclusion
obtained by forgetting the hsi invariance on the interval and W -invariance at
the vertices. The map on K1 is identified with the map K0(B(`2(W ))hsi) =
Z

2 ! K0(B(`2(W ))) = Z. This is a surjection, hence the kernel of the
connecting map K1(E/I) ! K0(I) is Z while the image agrees with the
image of the connecting map from Equation 1 and hence the cokernels also
agree.

We conclude that
K1(E) = Z

while K0(E) is the direct sum of the cokernel of K1(E/I) ! K0(I) with
K0(E/I) = Z

3. The cokernel is Z

2 and hence we obtain

K0(E) = Z

2 � Z

3 = Z

5.

This completes the calculation of the K-theory of group C⇤-algebra of the
(3, 3, 3)-triangle group N o W .

We have thus established the following.

Theorem 2.3. Let NoW denote the a�ne Weyl group of SU3 (the (3, 3, 3)-
triangle group). Note that this is also the a�ne Weyl group of PSU3. Then

K0(C⇤
r

(N o W )) = Z

5, K1(C⇤
r

(N o W )) = Z.

To illustrate Corollary 1.3 we now also consider the K-theory of C⇤
r

(�o

W ). We note that � is the image of the lattice Z

3 under the map

(a, b, c) 7! (a, b, c)� a + b + c

3
(1, 1, 1).

The kernel is the diagonal copy of Z in Z

3 and hence we can identify � with
Z

3/Z.
The characters on � thus correspond precisely to characters on Z

3 which
are trivial on the diagonal copy of Z. These are given by triples (↵,�, �) such
that ↵�� = 1, hence the dual b� of � is identified with the above maximal
torus T for SU3. The action of W on � corresponds to the permutation
representation on Z

3 which in turn corresponds to the original action of W
on T . We conclude that C⇤

r

(�o W ) ⇠= (C⇤
r

�) o

r

W ⇠= C(T ) o

r

W .
By Lemma 2.1 we can now identify C(T )o

r

W as the W -invariant algebra
(C(T )⌦B(`2(W ))W where W acts diagonally on the two factors. The action
on the second factor is as before: W acts by conjugation by the right-regular
regresentation ⇢. The triangle � injects into T and we will now regard it as
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a subspace of T . This gives a fundamental domain for the action of W on
T , hence the restriction map (C(T ) ⌦ B(`2(W )))W to C(�) ⌦ B(`2(W )) is
injective. We denote the image by F . It is important to note that while the
triangle � is the same as in the previous calculation, the triangle no longer
has an action of C3 on it, indeed for w 6= e in W , the action of w on T takes
the interior �� of � entirely o↵ itself.

The W -invariance condition means that if a point x 2 � has stabiliser
H  W then the value at x is an H-invariant operator. As noted above,
the interior of � has trivial stabiliser. The three edges of � have stabilisers
hs1i, hs2i, hs1s2s1i while the vertices are stabilised by W . Thus we have
identified C(T ) o

r

W with the subalgebra of C(�) ⌦ B(`2(W )) satisfying
(A),(B) as above. The algebra E considered previously is precisely the C3-
invariant subalgebra of F . Let J = C0(��)⌦B(`2(W )). We have K0(J) = Z

and K1(J) = 0. We must now determine the K-theory of the quotient F/J .
The algebra F/J consists of functions on the boundary @� which are

W -invariant at the vertices and invariant under hs1i, hs2i and hs1s2s1i re-
spectively on the three edges. Conjugating the values by e, s2s1 and s1s2 on
the three edges we obtain functions which are hs1i invariant on each edge.
The W -invariance at the vertices allows us to conjugate by di↵erent values
on di↵erent edges since the vertex values are unchanged by conjugation. We
consider the ideal L in this algebra consisting of functions vanishing at the
three vertices. This ideal can be identified as the direct sum

C0(I1)⌦ B(`2(W ))hs1i � C0(I2)⌦ B(`2(W ))hs1i � C0(I3)⌦ B(`2(W ))hs1i

⇠= (C0(I1) � C0(I2) � C0(I3)) ⌦ B(`2(W ))hs1i

where I1, I2, I3 denote the interiors of the edges of the triangle. Its K-theory
is thus 0 in dimension 0 and Z

2 � Z

2 � Z

2 in dimension 1.
The quotient by this ideal is the sum of three copies of C[W ], one for each

vertex. Its K-theory is thus Z

3�Z

3�Z

3 in dimension 0, and 0 in dimension
1. We obtain the following 6-term exact sequence.

0 ����! K0(F/J) ����! Z

3 � Z

3 � Z

3

x

?

?

?

?

y

@

0  ���� K1(F/J)  ���� Z

2 � Z

2 � Z

2

We remark that the algebra is contained in C(@�) ⌦ B(`2(W ))hs1i for
which there is a corresponding 6-term exact sequence arising from the ideal
L. The K-theory of C(@�)⌦B(`2(W ))hs1i is Z

2 in both dimensions and the
6-term sequence is

0 ����! Z

2 ����! Z

2 � Z

2 � Z

2

x

?

?

?

?

y

@

0

0  ���� Z

2  ���� Z

2 � Z

2 � Z

2
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The connecting map @ is now given by the following composition

Z

3 � Z

3 � Z

3 ◆�◆�◆���! Z

2 � Z

2 � Z

2 @

0
�! Z

2 � Z

2 � Z

2.

Here ◆ is the map on K-theory induced by the inclusion of C[W ] = B(`2(W ))W

into B(`2(W ))hs1i. The latter is identified with M3(C[hs1i]), indeed enumer-
ating W as e, s1, s1s2, s1s2s1, s2s1, s2 the (right) s1-invariant operators are
matrices of the form

0

@

M11 M12 M13

M21 M22 M23

M31 M32 M33

1

A

with each M
ij

a 2 ⇥ 2-matrix in C[hs1i]. This allows us to explicitly iden-
tify the map ◆ as follows. The generators of K0(C[W ]) are given by three
projections p

t

, p
s

, p
d

, where p
t

maps to a rank one projection under the triv-
ial representation and vanishes under the sign and dihedral representations,
and similarly for p

s

, p
d

. Explicitly

p
t

=
1
6

X

w2W

[w], p
s

=
1
6

X

w2W

sign(w)[w], p
d

=
1
2
([e] + [s1])� p

t

.

Letting q
t

, q
s

denote the projections in C[hs1i] corresponding to the trivial
and sign representations of hs1i we have

p
t

=
1
3

0

@

q
t

q
t

q
t

q
t

q
t

q
t

q
t

q
t

q
t

1

A , p
s

=
1
3

0

@

q
s

q
s

q
s

q
s

q
s

q
s

q
s

q
s

q
s

1

A ,

p
d

+ p
t

=
1
2
([e] + [s1]) =

1
2

0

@

2q
t

q
t

+ q
s

q
t

� q
s

q
t

� q
s

q
t

+ q
s

1

A .

Hence at the level of K-theory the map is given by [p
t

] 7! [q
t

], [p
s

] 7! [q
s

]
and [p

d

] + [p
t

] 7! 2[q
t

] + [q
s

]. Hence [p
d

] 7! [q
t

] + [q
s

].
Since ◆ is surjective, the image, and hence also the cokernel, of @ is the

same as for @0. Hence we see that K1(F/J) = Z

2. The kernel of @0 is the
image of Z

2 in Z

2�Z

2�Z

2 under the diagonal inclusion. The kernel of @ is
thus the preimage of this diagonal Z

2 under ◆� ◆� ◆. Since [p
t

]+ [p
s

]� [p
d

] is
in the kernel of ◆, this element of K0(C[W ]) gives three elements of the kernel
of @, one at each vertex. We have two additional generators corresponding
to the elements of the diagonal Z

2. Explicitly we can take these to be
[p

t

� p
t

� p
t

] and [p
s

� p
s

� p
s

]. Hence we conclude that K0(F/J) = Z

5.
To complete the calculation of the K-theory of F we now consider the

6-term exact sequence arising from the short exact sequence

0! J ! F ! F/J ! 0
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This gives the following.
K0(J) = Z ����! K0(F ) ����! K0(F/J) = Z

5

x

?

?

?

?

y

K1(F/J) = Z

2  ���� K1(F )  ���� K1(J) = 0
It remains to determine the connecting map from K1(F/J) to K0(J). We
saw that the forgetful map F/J ! C(@�) ⌦ B(`2(W ))hs1i induced an iso-
morphism on K-theory. We observe that the further inclusion into C(@�)⌦
B(`2(W )) gives the summation map Z

2 ! Z on K1 (and also on K0). The
connecting map K1(F/J)! K0(J) factors through the connecting map for
the exact sequence

0! J ! C(�)⌦ B(`2(W ))! C(@�)⌦ B(`2(W ))! 0

which is an isomorphism K1(C(@�) ⌦ B(`2(W ))) = Z

⇠= K0(J) = Z. Thus
the map from K1(F/J) to K0(J) is again the summation map from Z

2 to
Z.

We thus conclude that K1(F ) ⇠= Z and K0(F ) ⇠= K0(F/J) ⇠= Z

5 estab-
lishing the following theorem.

Theorem 2.4. Let �o W denote the extended a�ne Weyl group of PSU3.
Then

K0(C⇤
r

(�o W )) = Z

5, K1(C⇤
r

(�o W )) = Z.

Remark 2.5. The observation that the K-theory groups appearing in Theo-
rems 2.3 and 2.4 are the same is an illustration of Corollary 1.3 for the Lie
group PSU3. Indeed in this example we see that the a�ne Weyl group and
extended a�ne Weyl group have K-theory which is integrally isomorphic,
not just rationally isomorphic.

3. Langlands duality

As discussed in the introduction one of the key motivations of this paper
is that for extended a�ne Weyl groups, the Baum-Connes correspondence
should be thought of as an equivariant duality between the tori T and b�. In
this section we will recall the definition of Langlands duality for complex Lie
groups and how this can be used to construct Langlands duality in the real
case. We will show that the aforementioned duality of the tori corresponds
to this real Langlands duality for the Lie group.

3.1. Complex reductive groups. Let H be a connected complex reduc-
tive group, with maximal torus S. This determines a root datum

R(H,S) := (X⇤(S), R,X⇤(S), R_)

Here R and R_ are the sets of roots and coroots of H, while

X⇤(S) := Hom(S, C⇥) and X⇤(S) := Hom(C⇥,S)(2)

are its character and co-character lattices.
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The root datum implicitly includes the pairing X⇤(S)⇥X⇤(S)! Z and
the bijection R ! R_, ↵ 7! h

↵

between roots and coroots. Root data
classify complex reductive Lie groups, in the sense that two such groups
are isomorphic if and only if their root data are isomorphic (in the obvious
sense).

Interchanging the roles of roots and coroots and of the character and
co-character lattices results in a new root datum:

R(H,S)_ := (X⇤(S), R_,X⇤(S), R)

The Langlands dual group of H is the complex reductive group H_

(unique up to isomorphism) determined by the dual root datum R(H,S)_.
A root datum also implies a choice of maximal torus S ⇢ H via the canonical
isomorphism S ' Hom(X⇤(S), C⇥), and likewise a natural choice of maximal
torus for the Langlands dual group H_ : S_ := Hom(X⇤(S), C⇥) ⇢ H_.

In particular, we have the equation

X⇤(S_) = X⇤(S)(3)

3.2. Compact semisimple groups. Let now G be a compact connected
semisimple Lie group, with maximal torus T . We recall that a compact
connected Lie group is semisimple if and only if it has finite centre [B,
p.285]. The classical examples are the compact real forms

SU
n

, SO2n+1, Sp2n

, SO2n

, E6, E7, E8, F4, G2.

For a Lie group G, the complexification G
C

is a complex Lie group together
with a morphism from G, satisfying the universal property that for any
morphism of G into a complex Lie group L there is a unique factorisation
through G

C

.
The complexification S := T

C

of T is a maximal torus in H := G
C

, and so
the dual torus S_ is well-defined in the dual group H_. Then T_ is defined
to be the maximal compact subgroup of S_, and satisfies the condition

(T_)
C

= S_.

By definition, the torus T_ is the T -dual of T .
We denote by X⇤(T ) the group of morphisms from the Lie group T to

the Lie group U = {z 2 C : |z| = 1}, and denote by X⇤(T ) the group
of morphisms from U to T . Corresponding to (3), we have the T -duality
equation

X⇤(T_) = X⇤(T )(4)

which follows from the identification of the lattices X⇤(T_), X⇤(T ) with their
complex counterparts X⇤(S_),X⇤(S). Moreover since S_ = Hom(X⇤(S), C⇥)
the maximal torus is T_ = Hom(X⇤(S),U) = Hom(X⇤(T ),U).

Definition 3.1. The Langlands dual of G, denoted G_, is defined to be a
maximal compact subgroup of H_ containing the torus T_.
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The process of passing to a maximal compact subgroup is inverse to com-
plexification in the sense that complexifying G_ recovers H_.

3.2.1. A table of Langlands dual groups. Given a compact connected semisim-
ple Lie group G, the product |⇡1(G)| · |Z(G)| is unchanged by Langlands
duality, i.e. it agrees with the product |⇡1(G_)| · |Z(G_)|. This product is
equal to the connection index, denoted f , (see [B, IX, p.320]), which is de-
fined in [B, VI, p.240]. The connection indices are listed in [B, VI, Plates
I–X, p.265–292].

The following is a table of Langlands duals and connection indices for
compact connected semisimple groups:

G G_ f
A

n

= SU
n+1 PSU

n+1 n + 1
B

n

= SO2n+1 Sp2n

2
C

n

= Sp2n

SO2n+1 2
D

n

= SO2n

SO2n

4
E6 E6 3
E7 E7 2
E8 E8 1
F4 F4 1
G2 G2 1

In this table, the simply-connected form of E6 (resp. E7) dualises to the
adjoint form of E6 (resp. E7).

The Lie group G and its dual G_ admit a common Weyl group

W = N(T )/T = N(T_)/T_.

The T -duality equation (4) identifies the action of the Weyl group of T on
X⇤(T ) with the dual action of the Weyl group of T_ on X⇤(T_).

Note that, in general, T and T_ are not isomorphic as W -spaces. For
example, let G = SU3. Then G_ = PSU3 and we have

T = {(z1, z2, z3) : z
j

2 U, z1z2z3 = 1}
as in the Section 2 and

T_ = {(z1 : z2 : z3) : z
j

2 U, z1z2z3 = 1}
the latter being in homogeneous coordinates. We remark that T_ can be
identified with the torus bN from the previous section, indeed T_ is the
Pontryagin dual of X⇤(T ) which in the case of SU3 is the group N since SU3

is simply connected. The map

T ! T_, (z1, z2, z3) 7! (z1 : z2 : z3)

is a 3-fold cover: the pre-image of (z1 : z2 : z3) is the set

{(⌘z1, ⌘z2, ⌘z3) : ⌘ 2 U, ⌘3 = 1}.
The torus T admits three W -fixed points, namely

{(1, 1, 1), (!,!,!), (!2,!2,!2) : ! = exp(2⇡i/3)}
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whereas the unique W -fixed point in T_ is the identity (1 : 1 : 1) 2 T_,
hence T and T_ are not equivariantly isomorphic.

3.3. The nodal group. The nodal group of T is defined to be

�(T ) := ker(exp : t! T )

where t denotes the Lie algebra of T . Di↵erentiating the action of W on T
via automorphisms we obtain a linear action of W on t. The map exp is
W -equivariant and hence the action of W restricts to an action on �(T ).

Lemma 3.2. There is a W -equivariant isomorphism

X⇤(T ) ' �(T )

Proof. The group X⇤(T ) is the group of morphisms from the Lie group U
to the Lie group T . Given f 2 X⇤(T ), we have a commutative diagram

�(U) ����! u = iR
exp����! U

?

?

y

�(f)

?

?

y

df

?

?

y

f

�(T ) ����! t

exp����! T

where �(f) is given by restricting df to �(U). We identify �(U) with the
subgroup 2⇡iZ of u = iR. The homomorphism �(f) is determined by its
value on the generator 2⇡i and we define a homomorphism

X⇤(T )! �(T ), f 7! �(f)(2⇡i).

Conversely, given � 2 �(T ) there is a unique linear map from u = iR to t

taking 2⇡i 7! �. Composing with the exponential map we obtain a map from
u to T , and since � is in the kernel of the exponential map this descends to
a morphism from U to T . This gives a homomorphism from �(T ) to X⇤(T )
which inverts the above homomorphism as in [B, p.307].

The isomorphism is equivariant since for f 2 X⇤(T ) we have

�(w · f)(2⇡i) = d(w · f)(2⇡i) = (w · df)(2⇡i) = w · (�(f)(2⇡i)).

⇤

We now observe that the groups �(T ) and T_ are in duality in the sense
of locally compact abelian topological groups.

Lemma 3.3. Let b� denote the Pontryagin dual of � = �(T ). Then we have
a W -equivariant isomorphism

b� ' T_.

and hence an isomorphism of W-C⇤-algebras

C⇤
r

(�) ' C(T_).
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Proof. By Lemma 3.2 the nodal group �(T ) is W -equivariantly isomorphic
to X⇤(T ). By the T -duality equation (4) the latter is equal to

X⇤(T_) = Hom(T_,U).

This by definition is the Pontryagin dual cT_. The result now follows by
Pontryagin duality. ⇤

4. Equivariant Poincaré Duality between C(T ) and C(T_)

Let G be a compact connected semisimple Lie group with maximal torus
T . Let T_ be the dual torus as in Section 3.2 and let W denote the
Weyl group of G. In this section we will establish the isomorphism from
KK⇤

W

(C(T ), C) to KK⇤
W

(C, C(T_)). We will do this by exhibiting a W -
equivariant Poincaré duality between the algebras C(T ) and C(T_).

We remark that the standard Poincaré duality of Kasparov, [K], provides
an equivariant duality from C(T ) to C(T, C`(t⇤)), however the introduction
of the Cli↵ord algebra gives a ‘dimension shift’ which does not appear in
the assembly map. We say ‘dimension shift’ in quotes since the appearance
of the Cli↵ord algebra would give a dimension shift if it carried a trivial
action, but is more subtle in the case when the group also acts on the
Cli↵ord algebra.

We recall that for G-C⇤-algebras A,B a Poincaré duality is given by
elements a 2 KKG(B b⌦A, C)1 and b 2 KKG(C, A b⌦B) with the property
that

b⌦
A

a = 1
B

2 KKG(B,B)
b⌦

B

a = 1
A

2 KKG(A,A).

These then yield isomorphisms between the K-homology of A and the K-
theory of B (and vice versa) given by

x 7! b⌦
A

x 2 KKG(C, B) for x 2 KK(A, C)
y 7! y⌦

B

a 2 KKG(A, C) for y 2 KK(C, B).

We will therefore construct elements in the groups KK
W

(C(T_) b⌦C(T ), C)
and KK

W

(C, C(T ) b⌦C(T_)). We begin with the latter.

4.1. Construction of the element in KK
W

(C, C(T ) b⌦C(T_)). Let C
c

(t)
denote the space of continuous compactly supported functions on t and equip
this with a C(T )⌦ C(T_)-valued inner product defined by

h�1,�2i(x, ⌘) =
X

↵,�2�

�1(x� ↵)�2(x� �)e2⇡ih⌘,��↵i.

We remark that the support condition ensures that this is a finite sum, and
that it is easy to check that h�1,�2i(x, ⌘) is �-periodic in x and �_-periodic
in ⌘.

1It is conventional to take a 2 KKG(A b⌦B, C) however we have selected this alternative
notational convention to favour the computation of b ⌦B a.
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The space C
c

(t) has a C(T )⌦ C[�]-module structure

(� · (f ⌦ [�])) = �(x + �)f̃(x)

where we view the function f in C(T ) as a �-periodic function f̃ on t. We
have

h�1,�2 · (f ⌦ [�])i(x, ⌘) =
X

↵,�2�

�1(x� ↵)�2(x� � + �)f̃(x� �)e2⇡ih⌘,��↵i.

=
X

↵,�

02�

�1(x� ↵)�2(x� �0)e2⇡ih⌘,�

0�↵if̃(x)e2⇡ih⌘,�i.

= h�1,�2i(x, ⌘)f̃(x)e2⇡ih⌘,�i.

Now completing C
c

(t) with respect to the norm arising from the inner prod-
uct, the module structure extends by continuity to give C

c

(t) the structure
of a C(T ) b⌦C⇤

r

(�) ⇠= C(T ) b⌦C(T_) Hilbert module. We denote this Hilbert
module by E and give this the trivial grading.

The group W acts on t and hence on C
c

(t) by (w · �)(x) = �(w�1x). We
have

(w · (� · (f ⌦ [�])))(x) = �(w�1x + �)f̃(w�1x) = ((w · �) · (w · f ⌦ [w�]))(x)

so the action is compatible with the module structure. Now for the inner
product we have

hw · �1, w · �2i(x, ⌘) =
X

↵,�2�

(w · �1)(x� ↵)(w · �2)(x� �)e2⇡ih⌘,��↵i

=
X

↵,�2�

�1(w�1x� w�1↵)�2(w�1x� w�1�)e2⇡ih⌘,��↵i

=
X

↵

0
,�

02�

�1(w�1x� ↵0)�2(w�1x� �0)e2⇡ih⌘,w(�0�↵

0)i

=
X

↵

0
,�

02�

�1(w�1x� ↵0)�2(w�1x� �0)e2⇡ihw�1
⌘,�

0�↵

0i

= (w · h�1,�2i)(x, ⌘).

Hence E is a W -equivariant Hilbert module.
We observe that the identity on E is a compact operator. To see this we

note that if  is supported inside a single fundamental domain for the action
of � on t then

( h ,�i)(x) = ( ·
X

↵,�2�

 (x� ↵)�(x� �)[� � ↵])(x)

=
X

↵,�2�

 (x� � � ↵)�(x� ↵)�(x� �)

=
X

↵2�

| (x� ↵)|2�(x).
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Hence the rank one operator � 7!  h ,�i is multiplication by | (x)|2 ex-
tended �-periodically from the fundamental domain to t. By taking a �-
equivariant partition of unity we can therefore exhibit the multiplication by
1 as a sum of rank one operators.

We thus have the following result.

Theorem 4.1. The triple (E , 1, 0), where 1 denote the identity representa-
tion of C on E, is a W -equivariant Kasparov triple defining an element b in
KK

W

(C, C(T ) b⌦C(T_)).

4.2. Construction of the element in KK
W

(C(T_) b⌦C(T ), C). Let {e
j

=
@

@x

j } be an orthonormal basis for t and let {"j} denotes the dual basis of t

⇤.
We we usually consider these as generators of the Cli↵ord algebra C`(t⇥ t

⇤).
Consider the projection P =

Q

j

1
2(1� ie

j

"j). We will show (Proposition
4.3) that this is W -invariant with respect to the diagonal action of W on
t⇥ t

⇤ (the action of W on t

⇤ is the dual action induced by the action on t).
The corner algebra PC`(t ⇥ t

⇤)P is CP , and we will identify this with C.
Now take S to be the space of spinors

S = C`(t⇥ t

⇤)P

which is a finite dimensional Hilbert space, with inner product given by
haP, bP i = Pa⇤bP . This is naturally equipped with a representation of
C`(t ⇥ t

⇤) by left multiplication and invariance of P with respect to W
implies that the action of W on the Cli↵ord algebra restricts to an action
on S.

Our K-homology element will be represented by an unbounded Kasparov
triple with Hilbert space L2(t) b⌦S.

We must now construct a representation of C(T_) b⌦C(T ) on L2(t) b⌦S.
To build the representation it su�ces to define commuting representations of
C(T_) b⌦1 and 1 b⌦C(T ). The representation of C(T ) is the usual pointwise
multiplication on L2(t) viewing elements of C(T ) as �-periodic functions on
t. The representation of C(T_) involves the action of � on t. We introduce
the following notation which is more general than we require at this point.

For a an a�ne isometry of t, let L
a

be the operator on L2(t) induced by
the action of a on t:

(L
a

⇠)(y) = ⇠(a�1 · y).
Here we will consider L

�

for � 2 � (acting by translations on t), however we
note that we can also use general elements of W 0

a

= �oW , and translations
by arbitrary elements of t.

Now for the function ⌘ 7! e2⇡ih⌘,�i in C(T_) we define

⇢(e2⇡ih⌘,�i) = L
�

⌦ 1S .

Identifying C(T_) with C⇤
r

(�) and identifying L2(t) with `2(�) ⌦ L2(X)
where X is a fundamental domain for the action of �, the representation of
the algebra is given by the left regular representation on `2(�).
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We define an unbounded operator Q0 : L2(t) b⌦S ! L2(t) b⌦S (using
Einstein summation convention) by

Q0(v ⌦ a) =
@v

@yj

⌦ "ja� 2⇡iyjv(y)⌦ e
j

a.

This operator combines the Dirac operator on t with the inverse Fourier
transform of the Dirac operator on t

⇤. It combines the creation and anni-
hilation operators for the Quantum Harmonic Oscillator, see Theorem 4.2
below.

Consider the commutators of Q0 with the representation ⇢. For f 2 C(T ),
the operator ⇢(f) commutes exactly with the second term 2⇡iyj ⌦ e

j

in Q0,
while, for f smooth, the commutator of ⇢(f) with @

@y

j ⌦ "j is given by the
bounded operator @f

@y

j ⌦ "j . Now for the function ⌘ 7! e2⇡ih⌘,�i in C(T_)
we have ⇢(e2⇡ih⌘,�i) = L

�

⌦ 1S . This commutes exactly with the di↵erential
term of the operator, while

L
�

(2⇡iyj)L⇤
�

= 2⇡i(yj � �j)

hence the commutator [L
�

⌦ 1S , 2⇡iyj ⌦ e
j

] is again bounded.
We have verified that Q0 commutes with the representation ⇢ modulo

bounded operators, on a dense subalgebra of C(T_) b⌦C(T ). Thus to show
that the triple

(L2(t) b⌦S, ⇢, Q0)

is an unbounded Kasparov triple it remains to prove the following.

Theorem 4.2. The operator Q0 has compact resolvent. It has 1-dimensional
kernel with even grading.

Proof. In the following argument we will not use summation convention.
We consider the following operators on L2(t) b⌦S:

p
j

=
@

@yj

⌦ "j

x
j

= �2⇡iyj ⌦ e
j

q
j

=
1
2
(1 + 1⌦ ie

j

"j)

A
j

=
1

2
p
⇡

(p
j

+ x
j

)

Since A
j

anti-commutes with 1⌦ ie
j

"j we have q
j

A
j

= A
j

(1� q
j

), hence we
can think of A

j

as an o↵-diagonal matrix with respect to q
j

. We write A
j

as a
j

+ a⇤
j

where a
j

= q
j

A
j

= A
j

(1� q
j

) and hence a⇤
j

= A
j

q
j

= (1� q
j

)A
j

.
We think of a⇤

j

and a
j

as creation and annihilation operators respectively
and we define a number operator N

j

= a⇤
j

a
j

. The involution i"j intertwines
q
j

with 1� q
j

. We define A0
j

, N 0
j

to be the conjugates of A
j

, N
j

respectively
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by i"j . Note that

A0
j

=
1

2
p
⇡

(p
j

� x
j

)

and hence
A2

j

= (A0
j

)2 + 2
1
4⇡

[x
j

, p
j

] = (A0
j

)2 + 1⌦ ie
j

"j .

We have N 0
j

= A0
j

(1� q
j

)A0
j

= q
j

(A0
j

)2. Thus

a
j

a⇤
j

= q
j

A2
j

q
j

= q
j

A2
j

= q
j

(A0
j

)2 + q
j

(1⌦ ie
j

"j) = N 0
j

+ q
j

.

Hence the spectrum of a
j

a⇤
j

(viewed as an operator on the range of q
j

) is
the spectrum of N 0

j

shifted by 1. However N 0
j

is conjugate to N
j

= a⇤
j

a
j

so
we conclude that

Sp(a
j

a⇤
j

) = Sp(a⇤
j

a
j

) + 1.

But Sp(a
j

a⇤
j

)\{0} = Sp(a⇤
j

a
j

)\{0} so we conclude that Sp(a⇤
j

a
j

) = {0, 1, 2, . . . }
while Sp(a

j

a⇤
j

) = {1, 2, . . . }.
Now since the operators A

j

pairwise gradedly commute we have

Q2
0 = 4⇡

X

j

A2
j

= 4⇡
X

j

a⇤
j

a
j

+ a
j

a⇤
j

and noting that the summands commute we see that Q2
0 has discrete spec-

trum. To show that (1 + Q2
0)�1 is compact, it remains to verify that kerQ0

is finite dimensional (and hence that all eigenspaces are finite dimensional).
We have

ker Q0 = kerQ2
0 =

\

j

ker A2
j

=
\

j

ker A
j

.

Multiplying the di↵erential equation (p
j

+ x
j

)f = 0 by � exp(⇡(yj)2 ⌦
i"je

j

)"j we see that the kernel of A
j

is the space of solutions of the di↵erential
equation

@

@yj

(exp(⇡(yj)2 ⌦ i"je
j

)f) = 0

whence for f in the kernel we have

f(y1, . . . , yn) = exp(�⇡(yj)2 ⌦ i"je
j

)f(y1, . . . , yj�1, 0, yj+1, . . . , yn).

Since the solutions must be square integrable the values of f must lie in the
+1 eigenspace of the involution i"je

j

, that is, the range of the projection
1 � q

j

. On this subspace the operator exp(�⇡(yj)2 ⌦ i"je
j

) reduces to
e�⇡(yj)2(1 � q

j

). Since the kernel of Q0 is the intersection of the kernels of
the operators A

j

an element of the kernel must have the form

f(y) = e�⇡|y|2
Y

j

(1� q
j

)f(0)

so the kernel is 1-dimensional. Indeed the product
Q

j

(1 � q
j

) is the pro-
jection P used to define the space of spinors S = C`(t ⇥ t

⇤)P , and hence
Q

j

(1�q
j

)f(0) lies in the 1-dimensional space PS = PC`(t⇥ t

⇤)P which has
even grading. ⇤
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We have show that (L2(t) b⌦S, ⇢, Q0) defines an unbounded Kasparov
triple. To show that it is an element of KK

W

(C(T )⌦C(T_), C) it remains
to consider the W -equivariance.

We begin by considering the abstract setup of a finite dimensional vector
space V equipped with the natural action of GL(V ). This induces a diagonal
action on V ⌦ V ⇤.

If V is equipped with a non-degenerate symmetric bilinear form g then
we can form the Cli↵ord algebra C`(V ). The subgroup O(g) of GL(V ),
consisting of those elements preserving g, acts naturally on C`(V ). The
bilinear form additionally gives an isomorphism from V to V ⇤ and hence
induces a bilinear form g⇤ on V ⇤, allowing us to form the Cli↵ord algebra
C`(V ⇤). Clearly the dual action of O(g) on V ⇤ preserves g⇤ hence there is
a diagonal action of O(g) on C`(V ) b⌦C`(V ⇤) which we identify with C`(V ⇥
V ⇤).

We say that an element a of C`(V ⇥ V ⇤) is symmetric if there exists a
g-orthonormal2 basis {e

j

: j = 1, . . . , n} with dual basis {"j : j = 1, . . . , n}
such that a can be written as p(e1"

1, . . . , e
n

"n) where p(x1, . . . , xn

) is a
symmetric polynomial.
Proposition 4.3. For any basis {e

j

} of V with dual basis {"j} for V ⇤, the
Einstein sum e

j

⌦ "j in V ⌦ V ⇤ is GL(V )-invariant.
Suppose moreover that V is equipped with a non-degenerate symmetric

bilinear form g and that the underlying field has characteristic zero. Then
every symmetric element of C`(V ) b⌦C`(V ⇤) ⇠= C`(V ⇥V ⇤) is O(g)-invariant.

Proof. Identifying V ⌦ V ⇤ with endomorphisms of V in the natural way,
the action of GL(V ) is the action by conjugation and e

j

⌦ "j is the identity
which is invariant under conjugation.

For the second part, over a field of characteristic zero the symmetric poly-
nomials are generated by power sum symmetric polynomials p(x1, . . . , xn

) =
xk

1 + · · ·+ xk

n

, so it su�ces to consider

p(e1"
1, . . . , e

n

"n) = (e1"
1)k + · · ·+ (e

n

"n)k

= (�1)k(k�1)/2
⇣

(e1)k("1)k + · · ·+ (e
n

)k("n)k

⌘

.

When k is even, writing (e
j

)k = (e2
j

)k/2 = (g
jj

)k/2 and similarly ("j)k =
(gjj)k/2, we see that each term (e

j

)k("j)k is 1 since g
jj

= gjj = ±1 for
an orthonormal basis. Thus p(e1"

1, . . . , e
n

"n) = n(�1)k(k�1)/2 which is
invariant.

Similarly when k is odd we get (e
j

)k("j)k = e
j

"j so

p(e1"
1, . . . , e

n

"n) = (�1)k(k�1)/2(e1"
1 + · · ·+ e

n

"n).

As the sum e
j

⌦ "j in V ⌦ V ⇤ is invariant under GL(V ), it is in particu-
lar invariant under O(g), and hence the sum e

j

"j is O(g)-invariant in the
Cli↵ord algebra. ⇤

2We say that {ej} is g-orthonormal if gjk = ±�jk for each j, k.
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Returning to our construction, the projection P is a symmetric element
of the Cli↵ord algebra and hence is W -invariant by Proposition 4.3. It
follows that S carries a representation of W . The space L2(t) also carries a
representation of W given by the action of W on t and we equip L2(t) b⌦S
with the diagonal action of W .

To verify that the representation ⇢ is W -equivariant it su�ces to consider
the representations of C(T ) and C(T_) separately. As the exponential map
t! T is W -equivariant it is clear that the representation of C(T ) on L2(t)
by pointwise multiplication is W -equivariant.

For e2⇡ih⌘,�i 2 C(T_) we have w · (e2⇡ih⌘,�i) = e2⇡ihw�1·⌘,�i = e2⇡ih⌘,w·�i

thus ⇢(w ·(e2⇡ih⌘,�i)) = L
w·�⌦1S = L

w

L
�

L
w

�1⌦1S . Thus the representation
of C(T_) is also W -equivariant.

It remains to check that the operator Q0 is W -equivariant. By definition

Q0 =
@

@yj

⌦ "j � 2⇡iyj ⌦ e
j

.

Now by Proposition 4.3 @

@y

j ⌦ "j = e
j

⌦ "j is a GL(t)-invariant element
of t ⌦ t

⇤ and so in particular it is W -invariant. Writing yj = h"j , yi the
W -invariance of the second term again follows from invariance of e

j

⌦ "j .
Hence we conclude the following.

Theorem 4.4. The triple (L2(t) b⌦S, ⇢, Q0) constructed above defines an
element a of KK

W

(C(T_) b⌦C(T ), C).

4.3. The Kasparov product b⌦
C(T_) a. We will compute the Kasparov

product of b 2 KK
W

(C, C(T ) b⌦C(T_)) with a 2 KK
W

(C(T_) b⌦C(T ), C)
where the product is taken over C(T_) (not C(T ) b⌦C(T_)).

Recall that b is given by the Kasparov triple (E , 1, 0) where E is the
completion of C

c

(t) with the inner product

h�1,�2i(x, ⌘) =
X

↵,�2�

�1(x� ↵)�2(x� �)e2⇡ih⌘,��↵i

in C(T ) b⌦C(T_). As above a is given by the triple (L2(t) b⌦S, ⇢, Q0).
To form the Kasparov product we must take that tensor product of E

with L2(t) b⌦S over C(T_) and as the operator in the first triple is zero, the
operator required for the Kasparov product can be any connection for Q0.

We note that the representation ⇢ is the identity on S and hence

E b⌦
C(T_)(L2(t) b⌦S) = (E b⌦

C(T_)L
2(t)) b⌦S.

Thus we can focus on identifying the tensor product E b⌦
C(T_)L

2(t). By
abuse of notation we will also let ⇢ denote the representation of C(T ) b⌦C(T_)
on L2(t).

As we are taking the tensor product over C(T_), not over C(T ) b⌦C(T_),
we are forming the Hilbert module

(E b⌦C(T )) b⌦
C(T ) b⌦C(T_) b⌦C(T )(C(T ) b⌦L2(t))



24 GRAHAM A. NIBLO, ROGER PLYMEN AND NICK WRIGHT

however since the algebra C(T ) is unital, it su�ces to consider elementary
tensors of the form (�⌦ 1)⌦ (1⌦ ⇠). Where there is no risk of confusion we
will abbreviate these are �⌦ ⇠

Let �1,�2 2 C
c

(t) and let ⇠1, ⇠2 be elements of L2(t). Then

h�1 ⌦ ⇠1,�2 ⌦ ⇠2i = h1⌦ ⇠1, (1⌦ ⇢)(h�1,�2i ⌦ 1)(1⌦ ⇠2)i.

The operator (1⌦ ⇢)(h�1,�2i ⌦ 1) corresponds to a field of operators

(1⌦ ⇢)(h�1,�2i ⌦ 1)(x) =
X

↵,�2�

�1(x� ↵)�2(x� �)⌦ ⇢(e2⇡ih⌘,��↵i ⌦ 1)

=
X

↵,�2�

�1(x� ↵)�2(x� �)⌦ L⇤
↵

L
�

and so

h�1 ⌦ ⇠1,�2 ⌦ ⇠2i(x) =
X

↵,�2�

�1(x� ↵)�2(x� �)hL
↵

⇠1, L
�

⇠2i

= h
X

↵2�

�1(x� ↵)L
↵

⇠1,
X

�2�

�2(x� �)L
�

⇠2i.

We note that x 7!
P

↵2� �1(x� ↵)L
↵

⇠1 is a continuous �-equivariant (and
hence bounded) function from t to L2(t). Let C(t, L2(t))� denote the space
of such functions equipped with the C(T ) module structure of pointwise
multiplication in the first variable and gives the pointwise inner product
hg1, g2i(x) = hg1(x), g2(x)i. We remark that equivariance implies this inner
product is a �-periodic function on t.

The above calculation show that E b⌦
C(T_)L

2(t) maps isometrically into
C(t, L2(t))� via the map

�⌦ ⇠ 7!
X

↵2�

�(x� ↵)L
↵

⇠.

Moreover this map is surjective. To see this, note that if � is supported
inside a single fundamental domain then for x in that fundamental domain
we obtain the function �(x)⇠. This is extended by equivariance to a function
on t, and using a partition of unity one can approximate an arbitrary element
of C(t, L2(t))� by sums of functions of this form.

We now remark that C(t, L2(t))� is in fact isomorphic to the Hilbert
module C(T,L2(t)) via a change of variables. Given g 2 C(t, L2(t))�, let
h̃(x) = L�x

g(x). The �-equivariance of g ensures that g(� + x) = L
�

g(x)
whence

h̃(� + x) = L�x��

g(� + x) = L�x��

L
�

g(x) = L�x

g(x) = h̃(x).

As h̃ is a �-periodic function from t to L2(t) we identify it via the exponential
map with the continuous function h from T to L2(t) such that h̃(x) =
h(exp(x)). Hence g 7! h defines the isomorphism C(t, L2(t))� ⇠= C(T,L2(t)).

We now state the following theorem.
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Theorem 4.5. The Hilbert module E b⌦
C(T_)(L2(t) b⌦S) is isomorphic to

C(T,L2(t) b⌦S) via the map

�⌦ (⇠ ⌦ s) 7!
X

↵2�

�(x� ↵)L
↵�x

⇠ ⌦ s.

The representation of C(T ) on L2(t) induces a representation � of C(T ) on
C(T,L2(t) b⌦S) defined by

[�(f)h](exp(x), y) = f(exp(x + y))h(exp(x), y).

Here the notation h(exp(x), y) denotes the value at the point y 2 t of
h(exp(x)) 2 L2(t) b⌦S.

Proof. We recall that E b⌦
C(T_)(L2(t) b⌦S) is isomorphic to (E b⌦

C(T_)L
2(t)) b⌦S

and we have established that E b⌦
C(T_)L

2(t) ⇠= C(T,L2(t)). This provides
the claimed isomorphism.

It remains to identify the representation. Given f 2 C(T ) let f̃(x) =
f(exp(x)) denote the corresponding periodic function on t. By definition the
representation of C(T ) on E b⌦

C(T_)(L2(t) b⌦S) takes �⌦ ⇠⌦ s to �⌦ f̃⇠⌦ s.
This is mapped under the isomorphism to the �-periodic function on t whose
value at x is

X

↵2�

�(x� ↵)L
↵�x

(f̃⇠)⌦ s 2 L2(t) b⌦S.

Evaluating this element of L2(t) b⌦S at a point y 2 t we have
X

↵2�

�(x�↵)f̃(x�↵+y)⇠(x�↵+y)⌦s = f̃(x+y)
X

↵2�

�(x�↵)[L
↵�x

⇠](y)⌦s

by �-periodicity of f̃ . Thus �(f) pointwise multiplies the image of �⌦ ⇠⌦ s

in C(T,L2(t) b⌦S) by f̃(x + y) = f(exp(x + y)) as claimed. ⇤

We now define an operator Q on C(T,L2(t) b⌦S) by

(Qh)(exp(x)) = Q0(h(exp(x)))

for h 2 C(T,L2(t) b⌦S).

Theorem 4.6. The unbounded operator Q is a connection for Q0 in the
sense that the bounded operator F = Q(1 + Q2)�1/2 is a connection for
F0 = Q0(1 + Q2

0)�1/2, after making the identification of Hilbert modules as
in Theorem 4.5.

Proof. Let Q
x

= (L
x

⌦ 1S)Q0(L�x

⌦ 1S) and correspondingly define

F
x

= Q
x

(1 + Q2
x

)�1/2 = (L
x

⌦ 1S)F0(L�x

⌦ 1S).

The commutators [L
x

⌦ 1S , Q0] are bounded (the argument is exactly as for
[L

�

⌦ 1S , Q0] in Section 4.2). It follows (in the spirit of Baaj-Julg, [BJ])
that the commutators [L

x

⌦1S , F0] are compact. Thus F
x

�F0 is a compact
operator for all x 2 t.
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To show that F is a connection for F0 we must show that for � 2 E , the
diagram

L2(t) b⌦S F0����! L2(t) b⌦S

�⌦
?

?

y

�⌦
?

?

y

E ⌦ L2(t) b⌦S E ⌦ L2(t) b⌦S
⇠=
?

?

y

⇠=
?

?

y

C(T,L2(t) b⌦S) ����!
F

C(T,L2(t) b⌦S)

commutes modulo compact operators.
Following the diagram around the right-hand side we have

⇠ ⌦ s 7!
X

↵2�

�(x� ↵)(L
↵�x

⌦ 1S)F0(⇠ ⌦ s)

while following the left-hand side we have

F
h

X

↵2�

�(x� ↵)(L
↵�x

⌦ 1S)(⇠ ⌦ s)
i

=
X

↵2�

�(x� ↵)F0(L↵�x

⌦ 1S)(⇠ ⌦ s).

As [F0, L↵�x

⌦1S ] is a compact operator for each x and the sum is finite for
each x, the di↵erence between the two paths around the diagram is a function
from T to compact operators on L2(t) b⌦S. It is thus a compact operator
from the Hilbert space L2(t) b⌦S to the Hilbert module C(T,L2(t) b⌦S) as
required. ⇤

Theorem 4.7. The Kasparov product b⌦
C(T_)a is 1

C(T ) in KK
W

(C(T ), C(T )).

Proof. We define a homotopy of representations of C(T ) on C(T,L2(t) b⌦S)
by

[�
�

(f)h](exp(x), y) = f(exp(x + �y))h(exp(x), y)

and note that �1 = � while �0 is simply the representation of C(T ) on
C(T,L2(t) b⌦S) by pointwise multiplication of functions on T . It is easy to
see that these representations are W -equivariant.

Let f be a smooth function on T and let h 2 C(T,L2(t) b⌦S). Let f̃(x) =
f(exp(x)) and let h̃(x, y) = h(exp(x), y). Then

([Q,�
�

(f)]h)(exp(x), y)

=
⇥ @

@yj

("j f̃(x + �y)h̃(x, y))� 2⇡iyje
j

f̃(x + �y)h̃(x, y)
⇤

�
⇥

f̃(x + �y)
@

@yj

("j h̃(x, y))� f̃(x + �y)2⇡iyje
j

h̃(x, y)
⇤

=
@

@yj

(f̃(x + �y))("j h̃(x, y)).
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For each � the operator Q thus commutes with the representation �
�

mod-
ulo bounded operators on a dense subalgebra of C(T ). Hence for each �
(C(T,L2(t) b⌦S),�

�

,Q) defines an unbounded Kasparov triple.
This is true in particular for � = 1 and thus (C(T,L2(t) b⌦S),�,Q) is

a Kasparov triple so as the operator in the triple b is zero while Q is a
connection for Q0 it follows that b ⌦

C(T_) a = (C(T,L2(t) b⌦S),�,Q) in
KK

W

(C(T ), C(T )).
Now applying the homotopy we have b⌦

C(T_)a = (C(T,L2(t) b⌦S),�0,Q).
Since �0 commutes exactly with the operator Q the representation�0 re-
spects the direct sum decomposition of C(T,L2(t) b⌦S) as C(T, ker(Q0)) �
C(T, ker(Q0)?). The operator Q is invertible on the second summand
(and commutes with the representation) and hence the corresponding Kas-
parov triple (C(T, ker(Q0)?),�0|

C(T,ker(Q0)?),Q|
C(T,ker(Q0)?)) is zero in KK-

theory.
We thus conclude that b ⌦

C(T_) a = (C(T, ker(Q0)),�0|
C(T,ker(Q0)), 0).

Since kerQ0 is 1-dimensional (Theorem 4.2) the module C(T, ker(Q0)) is
isomorphic to C(T ) and the restriction of �0 to this is the identity represen-
tation of C(T ) on itself. Thus b⌦

C(T_) a = (C(T ), 1, 0) = 1
C(T ). ⇤

4.4. The Kasparov product b⌦
C(T )a. We begin by considering the Lang-

lands dual picture, which exchanges the roles of T and T_. There exist
elements a

_ 2 KK
W

(C(T ) b⌦C(T_), C) and b

_ 2 KK
W

(C, C(T_) b⌦C(T ))
for which the result of the previous section implies b

_ ⌦
C(T ) a

_ = 1
C(T_) in

KK
W

(C(T_), C(T_)).
We will show that there is an isomorphism ✓ : C(T_) b⌦C(T )! C(T ) b⌦C(T_)

such that a = ✓⇤a_ and b = ✓�1
⇤ b

_. This will imply that b ⌦
C(T ) a =

b

_ ⌦
C(T ) a

_ = 1
C(T_) in KK

W

(C(T_), C(T_)) and hence will complete the
proof of the Poincaré duality between C(T ) and C(T_).

We recall that a is represented by the unbounded Kasparov triple (L2(t) b⌦S, ⇢, Q0)
where S = C`(t⇥ t

⇤)P , for P the projection P =
Q

j

1
2(1� ie

j

"j) and

Q0 =
@

@yj

⌦ "j � 2⇡iyj ⌦ e
j

.

For � 2 �, � 2 �_ and correspondingly e2⇡ih⌘,�i in C(T_), e2⇡ih�,xi in C(T ),
the representation ⇢ of C(T_) b⌦C(T ) is defined by

⇢(e2⇡ih⌘,�i)(⇠ ⌦ s) = L
�

⇠ ⌦ s, and ⇢(e2⇡ih�,xi)(⇠ ⌦ s) = e2⇡ih�,xi⇠ ⌦ s.

By definition a

_ is represented by the triple (L2(t⇤) b⌦S_, ⇢_, Q_
0 ) where

S_ = C`(t⇤ ⇥ t)P_, for P_ the projection P_ =
Q

j

1
2(1� i"je

j

) and

Q_
0 =

@

@⌘
j

⌦ e
j

� 2⇡i⌘
j

⌦ "j .
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For � 2 �, � 2 �_ and correspondingly e2⇡ih⌘,�i in C(T_), e2⇡ih�,xi in C(T ),
the representation ⇢_ of C(T ) b⌦C(T_) is now defined by

⇢_(e2⇡ih�,xi)(⇠_⌦s_) = L_
�

⇠_⌦s_, and ⇢_(e2⇡ih⌘,�i)(⇠_⌦s_) = e2⇡ih⌘,�i⇠_⌦s_.

Here L_
�

denotes the translation action of � 2 �_ on L2(t⇤).
In our notation, "j is again an orthonormal basis for t

⇤ and e
j

is an
orthonormal basis for t. We can canonically identify C`(t⇥t

⇤) with C`(t⇤⇥t),
and hence think of both S and S_ as subspaces of this algebra.

We can identify L2(t) with L2(t⇤) via the Fourier transform: let F :
L2(t)! L2(t⇤) denote the Fourier transform isomorphism

[F⇠](⌘) =
Z

t
⇠(y)e2⇡ih⌘,yi dy.

It is easy to see that this is W -equivariant.
To identify S with S_, let u 2 C`(t ⇥ t

⇤) be defined by u = "1"2 . . . "n

when n = dim(t) is even and u = e1e2 . . . e
n

when n is odd.

Lemma 4.8. Conjugation by u defines a W -equivariant unitary isomor-
phism U : S ! S_. For a 2 C`(t ⇥ t

⇤) (viewed as an operator on S by
Cli↵ord multiplication) UaU⇤ is Cli↵ord multiplication by uau⇤ on S_ and
in particular Ue

j

U⇤ = e
j

while U"jU⇤ = �"j.

Proof. We first note that u respectively commutes and anticommutes with
e

j

, "j (there being respectively an even or odd number of terms in u which
anticommute with e

j

, "j). It follows that uPu⇤ = P_, hence conjugation by
u maps S to S_.

Denoting by ⇡ : CP ! C the identification of CP with C, the inner
product on S is given by hs1, s2i = ⇡(s⇤1s2) while the inner product on S_
is given by hs_1 , s_2 i = ⇡(u⇤(s_1 )⇤s_2 u). Thus

husu⇤, s_i = ⇡(u⇤(usu⇤)⇤s_u) = ⇡(s⇤u⇤s_u) = hs, u⇤s_ui

so U⇤ is conjugation by u⇤ which inverts U establishing that U is unitary.
We now check that U is W -equivariant. In the case that t is even-

dimensional, we note that identifying C`(t⇤) with the exterior algebra of
t

⇤ (as a W -vector space), u corresponds to the volume form on t

⇤ so w · u =
det(w)u. Similarly in the odd dimensional case u corresponds to the volume
form on t and again the action of w on u is multiplication by the determinant.
Thus

w · U(s) = w · (usu⇤) = (w · u)(w · s)(w · u⇤) = det(w)2 u(w · s)u⇤ = U(w · s)

since det(w) = ±1.
Finally for s_ 2 S_ and a 2 C`(t⇥ t

⇤) we have

UaU⇤s_ = U(au⇤s_u) = uau⇤s_

and hence Ue
j

U⇤ = ue
j

u⇤ = e
j

, U"jU⇤ = u"ju⇤ = �"j . ⇤



EXTENDED AFFINE WEYL GROUPS 29

Since F ⌦ U is a W -equivariant unitary isomorphism from L2(t) b⌦S to
L2(t⇤) b⌦S_, the triple (L2(t) b⌦S, ⇢, Q0) representing a is isomorphic to the
Kasparov triple

(L2(t⇤) b⌦S_, (F ⌦ U)⇢(F⇤ ⌦ U⇤), (F ⌦ u)Q0(F⇤ ⌦ U⇤)).

Theorem 4.9. Let ✓ : C(T_) b⌦C(T )! C(T ) b⌦C(T_) be defined by

✓(g ⌦ f) = f ⌦ (g � ✏).
where ✏ is the involution on T_ defined by ✏(exp(⌘)) = exp(�⌘). Then
a = ✓⇤a_ in KK

W

(C(T_) b⌦C(T ), C).

Proof. We will show that ⇢_ � ✓ = (F ⌦ U)⇢(F⇤ ⌦ U⇤) and (F ⌦ u)Q0(F⇤ ⌦
U⇤) = Q_

0 . We begin with the operator.
The operator Q0 is given by

@

@yj

⌦ "j � 2⇡iyj ⌦ e
j

.

Conjugating the operator @

@y

j by the Fourier transform we obtain the mul-
tiplication by 2⇡i⌘

j

, while conjugating �2⇡iyj by the Fourier transform we
obtain the multiplication by �2⇡i( i

2⇡

@

@⌘j
) = @

@⌘j
. Conjugation by U negates

"j and preserves e
j

hence

(F ⌦ u)Q0(F⇤ ⌦ U⇤) = 2⇡i⌘
j

⌦ (�"j) +
@

@⌘
j

⌦ e
j

= Q_
0 .

For trhe representation, ⇢(e2⇡ih�,xi) is multiplication by e2⇡ih�,xi on L2(t)
(with the identity on S) and conjugating by the Fourier transform we get
the translation L_

�

, hence (F ⌦ U)⇢(e2⇡ih�,xi)(F⇤ ⌦ U⇤) = ⇢_(e2⇡ih�,xi). On
the other hand ⇢(e2⇡ih⌘,�i) is the translation L

�

and Fourier transforming
we get the multiplication by e�2⇡ih⌘,�i. Thus (F ⌦U)⇢(e2⇡ih⌘,�i)(F⇤⌦U⇤) =
⇢_(e2⇡ih�⌘,�i).

We conclude that (F ⌦ U)⇢(F⇤ ⌦ U⇤) = ⇢_ � ✓ as required. ⇤
Theorem 4.10. The Kasparov product b⌦

C(T ) a is 1
C(T_) in the Kasparov

group KK
W

(C(T_), C(T_)). Hence the elements a 2 KK
W

(C(T_) b⌦C(T ), C)
and b 2 KK

W

(C, C(T ) b⌦C(T_)) exhibit a W -equivariant Poincaré duality
between the algebras C(T ) and C(T_).

Proof. We have b ⌦
C(T_) a = 1

C(T ) in KK
W

(C(T ), C(T )) by Theorem 4.7
while b

_⌦
C(T ) a

_ = 1
C(T_) in KK

W

(C(T_), C(T_)) by Theorem 4.7 for the
dual group.

By Theorem 4.9 we have a

_ = (✓�1)⇤a whence

1
C(T_) = b

_ ⌦
C(T ) a

_ = (✓�1)⇤b_ ⌦
C(T ) a.

Let b

0 = (✓�1)⇤b_ in KK
W

(C, C(T ) b⌦C(T_)). Then

b = b⌦
C(T_) 1

C(T_) = b⌦
C(T_) (b0 ⌦

C(T ) a).
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By definition b

0 ⌦
C(T ) a = (b0 ⌦ 1

C(T_))⌦
C(T )⌦C(T_)

a and hence

b = (b⌦ b

0)⌦
C(T_) b⌦C(T )

a

by associativity of the Kasparov product. Here b⌦b

0 is the ‘external’ product
and lives in KK

W

(C, C(T ) b⌦C(T ) b⌦C(T_) b⌦C(T_)), with b appearing in
the first and last factors, and b

0 in the second and third. The product with
a is over the second and last factors. Similarly

b

0 = b

0 ⌦
C(T ) (b⌦

C(T_) a) = (b0 ⌦ b)⌦
C(T ) b⌦C(T_)

a

where b

0 now appears as the first and last factors and the product with a is
over the first and third factors. Up to reordering terms of the tensor product
(b⌦ b

0)⌦
C(T_) b⌦C(T )

a = (b0 ⌦ b)⌦
C(T ) b⌦C(T_)

a.

Thus (by commutativity of the external product) b = b

0 = (✓�1)⇤b_ and
hence b⌦

C(T ) a = 1
C(T_). This completes the proof. ⇤

Corollary 4.11. The Kasparov product with b = (E , 1, 0) induces an iso-
morphism from KK

W

(C(T ), C) to KK
W

(C, C(T_)).

5. Affine and Extended Affine Weyl groups

In this section we will give the precise definitions of the a�ne and extended
a�ne Weyl groups of a compact connected semisimple Lie group. As noted
earlier these are semidirect products of lattices in the Lie algebra t of a
maximal torus T by the Weyl group W . The a�ne Weyl group W

a

is a
Coxeter group while the extended a�ne Weyl group contains W

a

as a finite
index normal subgroup. The quotient W 0

a

/W
a

is the fundamental group of
the Lie group G.

Recall that �(T ) is the kernel of the exponential map exp : t ! T . Let
p : eG! G denote the universal cover and let eT be the preimage of T which
is a maximal torus in eG. We consider the following commutative diagram.

�( eT ) ����! t ����! eT ����! 0
?

?

y

◆

?

?

y

id

?

?

y

p| eT

0 ����! �(T ) ����! t ����! T

By the snake lemma the sequence

ker(id) ! ker(p|e
T

) ! coker(◆) ! coker(id)
|| || || ||
0 ⇡1(G) �(T )/�( eT ) 0

is exact, hence �(T )/�( eT ) is isomorphic to ⇡1(G). We thus have a map from
�(T ) onto ⇡1(G). The kernel of this map is denoted N(G, T ) however we
have seen that this is the nodal lattice �( eT ) for the torus eT .
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Definition 5.1. The a�ne Weyl group of G is

W
a

= W
a

(G) = N(G, T ) o W

and the extended a�ne Weyl group of G is

W 0
a

= W
a

(G) = �(T ) o W

where W denotes the Weyl group of G.

The following is now immediate.

Lemma 5.2. Let eG denote the universal cover of G and let eT denote a
maximal torus in eG. Then we have

W
a

(G) = W 0
a

( eG) = W
a

( eG)

⇤
We remark that in general the extended a�ne Weyl group W 0

a

(G) is a
split extension of W

a

(G) by ⇡1(G) i.e. a semidirect product.

6. Langlands Duality and K-theory

In this section we will consider the K-theory of the a�ne and extended
a�ne Weyl groups of a compact connected semisimple Lie group. We will
prove the main results stated in the introduction.

6.1. The proof of Theorem 1.1. We begin with the following elementary
result which applies to a general semidirect product.

Lemma 6.1. Let �o W be a semidirect product of discrete groups and let
A be a �o W - C⇤-algebra. Then

A o

r

(�o W ) ⇠= (A o

r

�) o

r

W.

Proof. It is easy to see that the obvious map from the twisted group ring
A[� o W ] ! (A o

r

�) o

r

W is a homomorphism of ⇤-algebras with dense
image. To verify that the completions are isomorphic one simply notes that
both completions are defined by representing the algebras as operators on a
Hilbert space H⌦`2(�)⌦`2(W ) where A is faithfully represented on H. ⇤

We will now consider the left-hand side of the assembly map. The fol-
lowing theorem generalises the familiar identification KK⇤

�(C0(E�), C) '
K⇤(B�) for a torsion-free group �.

Theorem 6.2. Let � be a torsion-free group and W a finite group acting by
automorphisms on �. Let Z be any proper cocompact �o W -space. Then

KK⇤
�oW

(C0(Z), C) ⇠= KK⇤
W

(C(Z/�), C).

Taking the direct limit over all � o W -compact subspaces Z of a universal
example for proper actions E(�oW ), the left-hand side of the Baum-Connes
assembly map for �o W is

lim
!

KK⇤
W

(C(Z/�), C)
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and in particular if B� = E(�o W )/� is compact then the left-hand side of
the assembly map is KK⇤

W

(C(B�), C).

Remark 6.3. For the extended a�ne Weyl group, W 0
a

= � o W , the Lie
algebra t of a maximal torus T for G provides a universal example for proper
actions of W 0

a

. Thus the left-hand side of the Baum-Connes assembly map
for W 0

a

is
KK⇤

W

0
a
(C0(t), C) ' KK⇤

W

(C(T ), C).

Proof of Theorem 6.2. By the Green-Julg theorem [Black, Theorem 20.2.7(b)]
we have

KK⇤
�oW

(C0(Z), C) ' KK⇤(C0(Z) o

r

(�o W ), C).

By Lemma 6.1 C0(Z) o

r

(�o W ) ' (C0(Z) o

r

�) o

r

W , hence applying the
Green-Julg theorem again we have

KK⇤(C0(Z) o

r

(�o W ), C) ' KK⇤
W

(C0(Z) o

r

�, C).

Finally C0(Z) o

r

� is W -equivariantly Morita equivalent to C(Z/�), hence

KK⇤
W

(C0(Z) o

r

�, C) ' KK⇤
W

(C(Z/�), C).

The result now follows. ⇤

We now move on to the right-hand side of the assembly map.

Theorem 6.4. Let G be a compact connected semisimple Lie group with
extended a�ne Weyl group W 0

a

= �o W .

(a) The group C⇤-algebra C⇤
r

(W 0
a

) is isomorphic to (C(T_)⌦B(`2(W )))W

where T_ is a maximal torus of G_, and W acts diagonally on the
tensor product.

(b) The right-hand side of the Baum-Connes assembly map for W 0
a

,
KK⇤(C, C⇤

r

(W 0
a

)), is isomorphic to KK⇤
W

(C, C(T_)).

Proof. By Lemma 6.1

C⇤
r

(W 0
a

(G)) = C⇤
r

(�(T ) o W ) ' C⇤
r

(�(T )) o

r

W.

This is isomorphic to C(T_) o

r

W by Lemma 3.3. By Lemma 2.1 this is
isomorphic to (C(T_)⌦ B(`2(W )))W establishing (a).

At the level of K-theory we have

KK(C, C⇤
r

(W 0
a

)) ' KK(C, C(T ) o W ) ' KK
W

(C, C(T_))

by the Green-Julg theorem [Black, Theorem 20.2.7(a)] establishing (b). ⇤

Our first main result now follows.

Proof of Theorem 1.1. This follows from Theorem 6.2, Remark 6.3, Theo-
rem 6.4 and Corollary 4.11. ⇤
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6.2. K-theory isomorphisms for a�ne and extended a�ne Weyl
groups. Recall that in Section 2 we considered the extended a�ne Weyl
groups of PSU3 and its Langlands dual SU3. The extended a�ne Weyl
group of the latter is the a�ne Weyl group for both of these Lie groups. We
saw that although the two extended a�ne Weyl groups are non-isomorphic,
their group C⇤-algebras have the same K-theory.

In this section we will show that this is not a coincidence, indeed pass-
ing to the Langlands dual always rationally preserves the K-theory for the
extended a�ne Weyl groups. In particular where the extended a�ne Weyl
group of the dual of G agrees with the a�ne Weyl group of G (as for PSU3)
the K-theory for the a�ne and extended a�ne Weyl groups of G agrees up
to rational isomorphism.

Theorem 1.2. Let G be a compact connected semisimple Lie group and G_

its Langlands dual. Let W 0
a

(G), W 0
a

(G_) denote the extended a�ne Weyl
groups of G and G_ respectively. Then there is a rational isomorphism

K⇤(C⇤
r

(W 0
a

(G))) ⇠= K⇤(C⇤
r

(W 0
a

(G_))).

Proof. By Theorem 6.4 we have an isomorphism

K⇤(C⇤
r

(W 0
a

(G))) ' KW

⇤ (C(T_)) = K⇤
W

(T_).(5)

Dually, applying the proposition to G_ we have

K⇤(C⇤
r

(W 0
a

(G_))) ' KW

⇤ (C(T )) = K⇤
W

(T ).(6)

Now by Corollary 4.11 there is a Poincaré duality isomorphism

K⇤
W

(T_) ' KW

⇤ (T ).(7)

Applying the universal coe�cient theorem, we have the exact sequence

0! Ext1
Z

(K⇤�1
W

(T ), Z)! KW

⇤ (T )! Hom(K⇤
W

(T ), Z)! 0

In particular the torsion-free part of KW

⇤ (T ) agrees with the torsion-free
part of K⇤

W

(T ) therefore rationally we have

KW

⇤ (T ) ' K⇤
W

(T ).(8)

The theorem now follows by combining (5), (6), (7), (8). ⇤

Corollary 1.3. Let W
a

(G), W
a

(G_) be the a�ne Weyl groups of G, G_. If
G is of adjoint type then rationally

K⇤(C⇤
r

(W 0
a

(G))) ⇠= K⇤(C⇤
r

(W
a

(G_))).

If additionally G is of type A
n

, D
n

, E6, E7, E8, F4, G2 then rationally

K⇤(C⇤
r

(W 0
a

(G))) ⇠= K⇤(C⇤
r

(W
a

(G))).
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Proof. If G is a compact connected semisimple Lie group of adjoint type
then its Langlands dual G_ is simply connected so W 0

a

(G_) = W
a

(G_).
In the case that G is additionally of type A

n

, D
n

, E6, E7, E8, F4, G2 the
group G_ is the universal cover of G and hence W

a

(G) = W
a

(G_) =
W 0

a

(G_). ⇤
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