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MULTIPRECISION ALGORITHMS
FOR COMPUTING THE MATRIX LOGARITHM∗

MASSIMILIANO FASI† AND NICHOLAS J. HIGHAM‡

Abstract. Two algorithms are developed for computing the matrix logarithm in floating point
arithmetic of any specified precision. The backward error-based approach used in the state of the art
inverse scaling and squaring algorithms does not conveniently extend to a multiprecision environment,
so instead we choose algorithmic parameters based on a forward error bound. We derive a new forward
error bound for Padé approximants that for highly nonnormal matrices can be much smaller than the
classical bound of Kenney and Laub. One of our algorithms exploits a Schur decomposition while the
other is transformation-free and uses only the computational kernels of matrix multiplication and the
solution of multiple right-hand side linear systems. For double precision computations the algorithms
are competitive with the state of the art algorithm of Al-Mohy, Higham, and Relton implemented in
logm in MATLAB. They are intended for computing environments providing multiprecision floating
point arithmetic, such as Julia, MATLAB via the Symbolic Math Toolbox or the Multiprecision
Computing Toolbox, or Python with the mpmath or SymPy packages. We show experimentally that
the algorithms behave in a forward stable manner over a wide range of precisions, unlike existing
alternatives.

Key words. multiprecision arithmetic, matrix logarithm, principal logarithm, inverse scaling
and squaring method, Fréchet derivative, Padé approximation, Taylor approximation, forward error
analysis, MATLAB, logm.
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1. Introduction. Let A ∈ Cn×n be nonsingular with no nonpositive real eigen-
values. Any matrix X ∈ Cn×n satisfying the matrix equation

(1.1) X = eA

is a matrix logarithm of A. This equation has infinitely many solutions, but in appli-
cations one is typically interested in the principal matrix logarithm, denoted by logA,
which is the unique matrix X whose eigenvalues have imaginary part strictly between
−π and π. This choice is the most natural in that it guarantees that if the matrix is
real then so is its logarithm and that if the matrix has positive real spectrum then so
does its logarithm.

More generally, the unique matrix satisfying (1.1) having spectrum in the complex
strip

Lk = {z ∈ C | (k − 1)π < Im z < (k + 1)π}, k ∈ Z,

is called the kth branch of the matrix logarithm, and is denoted by logk A. The choice
k = 0 yields the principal logarithm logA. From a computational viewpoint, being
able to approximate logA is enough to determine the value of logk A for any k ∈ Z,
in view of the identity logk A = logA+ 2kπiI.
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The aim of this work is to develop an algorithm for logA that is valid for floating
point arithmetic of any given precision. A new algorithm is needed because the state of
the art algorithm of Al-Mohy, Higham, and Relton [3], [4], which is implemented in the
MATLAB function logm, is designed specifically for IEEE double precision arithmetic.
Indeed most available software for the matrix logarithm has this limitation of being
precision-specific [31]. Applications of the new algorithm will be in both low and high
precision contexts. For example, both the matrix logarithm [34] and low precision
computations (perhaps 32-bit single precision, or 16-bit half precision) [15], [25], have
been recently used in machine learning, and a combination of the two is potentially
of interest.

The need for high precision arises in several contexts. For instance, in order to
estimate the forward error of a double precision algorithm for the matrix logarithm a
reference solution computed at quadruple or higher precision is usually needed. Esti-
mating the backward error of a double precision algorithm for the matrix exponential
also requires the ability to evaluate logA at high precision. Let X = eA and let X̃ be
a solution computed by a double precision algorithm for the matrix exponential. If
the spectrum of A lies inside Lk, so that A = logkX, then the backward error of X̃
is naturally defined as the matrix ∆A such that

(1.2) logk X̃ = A+∆A,

because then X̃ = eA+∆A and the normwise relative backward error is ‖∆A‖/‖A‖ =

‖ log X̃ −A‖/‖A‖.
A multiprecision algorithm for the matrix logarithm is needed in a variety of

languages and libraries that attempt to provide multiprecision implementations of a
wide range of functions with both scalar and matrix arguments. The Julia language [8]
and Python’s SymPy [42], [47] and mpmath [37] libraries currently lack such an
algorithm, and we will show that the the algorithms proposed here improve upon
those in version 7.1 of the Symbolic Toolbox for MATLAB [46] and version 4.3.2 of
the Multiprecision Computing Toolbox [43].

The algorithm of Al-Mohy, Higham, and Relton used by logm is the culmination
of a line of inverse scaling and squaring algorithms that originates with Kenney and
Laub [38] for matrices and goes back to Briggs [11] in the 17th century in the scalar
case. In essence, the algorithm performs three steps. Initially, it takes square roots
of A, s of them, say, until the spectrum of A1/2s − I is within the unit disk, which is
the largest disk centered at the origin in which the principal branch of log(1 + x) is
analytic and its Padé approximants are therefore well defined. Then it selects a Padé
approximant rkm(x) := pk(x)/qm(x) to log(1 + x) of suitable degree [k/m], evaluates
the rational matrix function rkm(X) = pkm(X) qkm(X)−1 at X = A1/2s − I, and
finally reverts the square roots to form the approximation logA ≈ 2srkm(A1/2s − I).
The algorithm is based on a backward error analysis and uses pre-computed constants
that specify how small a normwise measure of A1/2s − I must be in order for a given
diagonal Padé approximant rmm to deliver a backward stable evaluation in IEEE
double precision arithmetic. These constants require a mix of symbolic and high
precision computation and it is not practical to compute them during the execution
of the algorithm for different precisions. Therefore in this work we turn to forward
error bounds, as were used in earlier work [14], [38].

Kenney and Laub [39] showed that for ‖X‖ < 1 and any subordinate matrix
norm,

(1.3) ‖ log(I −X)− r−km(X)‖ ≤ | log(1− ‖X‖)− r−km(‖X‖)|,
2



where r−km(x) is the [k/m] approximant to log(1 − x). In subsequent literature, the
equivalent bound

(1.4) ‖ log(I +X)− rkm(X)‖ ≤ | log(1− ‖X‖)− rkm(−‖X‖)|

has been preferred [29], [30, sec. 11.4]. Both upper bounds can be evaluated at
negligible cost, so they provide a way to choose the Padé degrees k and m. We will
derive and exploit a new version of the latter bound that it is phrased in terms of the
quantities

(1.5) αp(X) = max
(
‖Xp‖1/p, ‖Xp+1‖1/(p+1)

)
,

for suitable p, instead of ‖X‖. Since αp(X) is no larger than ‖X‖, and can be
much smaller when X is highly nonnormal, the new bound leads to a more efficient
algorithm.

Since in higher precision the algorithm may need a considerable number of square
roots, it can happen that log(I +X) has very small norm and thus that an absolute
error bound is not sufficient to guarantee that the algorithm will deliver a result with
small relative error. For this reason, unlike in some previous algorithms we will use a
relative error bound containing an inexpensive estimate of ‖ log(I +X)‖.

It is well known that for X ≥ 0 and k +m fixed the diagonal Padé approximant
(k = m) minimizes the error ‖ log(I − X) − r−km(X)‖ [39] and the cost in flops of
evaluating rkm(X) is roughly constant. Therefore diagonal approximants rm := rmm
have been favoured. However, the special case of the Taylor approximant tm := rm0

merits consideration here, as its evaluation requires only matrix multiplications, which
in practice are faster than multiple right-hand side solves. Throughout the paper we
write fm to denote either the Padé approximant rm or the Taylor approximant tm.

In addition to the matrix logarithm itself, we are also interested in evaluating
its Fréchet derivative. Being able to evaluate the Fréchet derivative and its adjoint
allows us to estimate the condition number κlog(A) of the matrix logarithm, which in
turn gives an estimate of the accuracy of the computed logarithm.

We use the term “multiprecision arithmetic” to mean arithmetic supporting mul-
tiple, and usually arbitrary, precisions. These precisions can be lower or higher than
the single and double precisions that are supported by the IEEE standard [35] and
usually available in hardware. We note that the 2008 revision of the IEEE standard
[36] also supports a quadruple precision floating point format and, for storage only, a
half precision format.

We begin the paper by summarizing in Section 2 available multiprecision comput-
ing environments. In Section 3 we derive a new forward bound for the error of Padé
approximation of a class of hypergeometric functions, which yields a bound sharper
than (1.3) and (1.4) for highly nonnormal matrices. In Section 4 we describe a new
Schur–Padé algorithm for computing the matrix logarithm and its Fréchet deriva-
tive at any given precision. Section 5 explores a Schur-free version of the algorithm.
Numerical examples are presented in Section 6 and concluding remarks are given in
Section 7.

Finally, we introduce some notation. The unit roundoff of the floating point
arithmetic is denoted by u. We recall that the Frechét derivative of a matrix function
f : Cn×n → Cn×n at A ∈ Cn×n is the linear functional Df (A) : Cn×n → Cn×n that
satisfies

f(A+ E) = f(A) +Df (A)[E] + o(‖E‖).
3



The relative condition number of the matrix function f at A is defined as

κf (A) = lim
ε→0

sup
‖E‖≤ε‖A‖

‖f(A+ E)− f(A)‖
ε‖f(A)‖

,

and is explicitly given by the formula [30, Thm. 3.1]

κf (A) =
‖Kf (A)‖ ‖A‖
‖f(A)‖

.

2. Support for multiple precision arithmetic. A wide range of software
supporting multiprecision floating point arithmetic is available. Multiprecision ca-
pabilities are a built-in feature of Maple [40] and Mathematica [41] as well as the
open-source PARI/GP [44] and Sage [45] computer algebra systems, and are avail-
able in MATLAB through the Symbolic Math Toolbox [46] and the Multiprecision
Computing Toolbox [43]. The programming language Julia [8] supports multipreci-
sion floating point numbers by means of the built-in data type BigFloat, while for
other languages third-party libraries are available: mpmath [37] and SymPy [42], [47],
for Python, the GNU MP Library [24] and the GNU MPFR Library [20] for C, the
BOOST libraries [10] for C++, and the ARPREC library [5] for C++ and Fortran.
The GNU MPFR Library is used in Julia, Maple, Sage, and the Multiprecision Com-
puting Toolbox for MATLAB, and interfaces for several programming languages are
available1.

3. Error in the approximation of hypergeometric functions. We recall
that the rational function rkm = pkm/qkm is a [k/m] Padé approximant of f if pkm
and qkm are polynomials of degree at most k and m, respectively, qkm(0) = 1, and
f(x) − rkm(x) = O(xk+m+1). In order to obtain the required error bounds for Padé
approximants to the logarithm we consider more generally Padé approximants to the
hypergeometric function

2F1(a, 1, c, x) =

∞∑
i=0

(a)i
(c)i

xi,

where a and c are real numbers, x is complex with |x| < 1, and (a)i = a(a+1) · · · (a+
i − 1) is the Pochhammer symbol for the rising factorial. Such Padé approximants
have been well studied [6, sec. 2.3].

By combining the analysis of Kenney and Laub [39] with a result of Al-Mohy and
Higham [2] we obtain the following stronger version of the error bound [39, Cor. 4].
Recall that αp is defined in (1.5).

Theorem 3.1. Let X ∈ Cn×n be such that ρ(X) < 1. Let r̃km be the [k/m] Padé
approximant to 2F1(a, 1, c, y). If m ≤ k + 1 and 0 < a < c then

(3.1) ‖2F1(a, 1, c,X)− r̃km(X)‖ ≤ |2F1(a, 1, c, αp(X))− r̃km(αp(X))|,

for any p satisfying p(p− 1) ≤ k +m+ 1.

Proof. Kenney and Laub [39, Thm. 5] show that if m ≤ k + 1, |y| < 1, and
0 < a < c then

(3.2) 2F1(a, 1, c, y)− r̃km(y) =
qkm(1)

qkm(y)

∞∑
i=k+m+1

(a)i(i− k −m)m
(c)i(i+ a−m)m

yi,

1See http://www.mpfr.org.
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where qkm is the denominator of r̃km, a polynomial of degree m. By [39, Cor. 1] the
zeros of qkm are simple and lie on (1,∞), and since qkm(0) = 1 it follows that for
|y| < 1,

q−1km(y) =

∞∑
j=0

djy
j ,

with di > 0 for all i. Since a, c > 0 and i > k+m, the coefficients of the series in (3.2)
are positive and so (3.2) can be rewritten as

(3.3) 2F1(a, 1, c, y)− r̃km(y) =

∞∑
i=k+m+1

ψiy
i,

where sign(ψi) = sign(qkm(1)) for all i. Therefore, applying [2, Thm. 4.2(a)] gives

‖2F1(a, 1, c,X)− r̃km(X)‖ ≤
∞∑

i=k+m+1

|ψi|αp(X)i

= |2F1(a, 1, c, αp(X))− r̃km(αp(X))|,

for p(p− 1) ≤ m+ k + 1.

For the matrix logarithm, we have

(3.4)
log(1 + x)

x
= 2F1(1, 1, 2,−x),

and thus the [k/m] Padé approximant rkm(x) to log(1 + x) and the [k/m] Padé
approximant r̃km(x) to 2F1(1, 1, 2, x) are related by

(3.5)
rkm(x)

x
= r̃k−1,m(−x).

Corollary 3.2. Let X ∈ Cn×n be such that ρ(X) < 1 and αp(X) < 1, and let
rkm be the [k/m] Padé approximant to log(1 + x). Then for m ≤ k, and p such that
p(p− 1) ≤ k +m+ 1, we have

‖ log(I +X)− rkm(X)‖ ≤ | log(1− αp(X))− rkm(−αp(X))|.(3.6)

Proof. From (3.3), (3.4), and (3.5), with a = 1, c = 2, and x = −y we have

−y−1 (log(1− y)− rkm(−y)) = 2F1(1, 1, 2, y)− r̃k−1,m(y) =

∞∑
i=k+m

ψiy
i,

that is,

log(1− y)− rkm(−y) = −
∞∑

i=k+m

ψiy
i+1.

We know from the proof of Theorem 3.1 that the ψi are one-signed, and so we deduce
that

‖ log(I −X)− rkm(−X)‖ ≤

∣∣∣∣∣
∞∑

i=k+m

ψiαp(X)i+1

∣∣∣∣∣
= | log(1− αp(X))− rkm(−αp(X))|.

Since αp(−X) = αp(X), we obtain the bound (3.6) on replacing X by −X.
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(b) rm

Figure 3.1: Comparison of the bounds (1.4) and (3.6) for A in (3.9) and 1 ≤ m ≤ 20,
with p∗ given by (3.8).

From the condition p(p− 1) ≤ k +m+ 1 of the corollary we see that (3.6) holds
for any p ∈ I[k/m], where

(3.7) I[k/m] =

{
n ∈ N : 1 ≤ n ≤

(1 +
√

5 + 4(k +m))

2

}
.

Since the bound (3.6) is decreasing in αp(X), the smallest bound is obtained for

(3.8) p∗ = arg min
{
αp(X) : p ∈ I[k/m]

}
.

In practice we will approximate p∗ rather than compute it exactly, as discussed in
Section 4.

We compare in Figure 3.1 the bounds (1.4) and (3.6) for the diagonal Padé ap-
proximant rm and the Taylor approximant tm, for m between 1 and 20, with the fairly
nonnormal matrix

(3.9) A =

[
0.01 0.95

0 0.04

]
.

We see that for both tm and rm the new bound can be many orders of magnitude
smaller than (1.4) and it is a much better estimate of the actual error.

4. Schur–Padé Algorithm. In this section and the next we develop two new
algorithms for computing the matrix logarithm in arbitrary precision floating point
arithmetic, one using the Schur decomposition and one transformation-free. The
algorithms build on the inverse scaling and squaring algorithms in [3], [4], [14], [30,
Algs 11.9, 11.10]. They combine features from these algorithms in a novel way that
yields algorithms that take the unit roundoff as an input parameter and need no
pre-computed constants.
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We approximate the Fréchet derivative of the logarithm by the Fréchet deriva-
tive of the logarithm’s Padé approximant. We will not give an error bound for this
approximation because, as noted in [4], it is problematic to obtain error bounds for
it that are expressed in terms of the αp(A). However our main intended use of the
Fréchet derivative is for condition number estimation, which does not require accu-
rate derivatives, and the same approximation was found to be perform well at double
precision in [4].

Our precision-independent algorithm for the matrix logarithm and its Fréchet
derivative is given in Algorithm 4.1. Instructions with an underlined line number are
to be executed only when the Fréchet derivative of the matrix logarithm is required.

The algorithm begins by computing the Schur decomposition A = QTQ∗. In
line 10 it repeatedly takes square roots of T until the spectrum of T − I is within
the unit ball centered at 0. Although the requirement ρ(X) = ρ(T − I) < 1 in
Corollary 3.2 is now satisfied, there is no guarantee that the relative forward error
‖ log T−fmmax

(T−I)‖1/‖ log T‖1, where mmax is the maximum degree of approximant
allowed and fm denotes rm or tm, is less than u. This is especially true for Taylor
approximation, which could need hundreds of terms to achieve a bound on the forward
error smaller than u.

Hence in line 13 the algorithm keeps taking square roots until

(4.1) | log(1− αp(T − I))− fmmax
(−αp(T − I))| < uψ(T ),

where ψ(T ) is an estimate of the 1-norm of log T and p is chosen as described below.
Approximating log T by the first term of the Taylor series, ψ(T ) = ‖T − I‖1, provides
an estimate accurate enough for all matrices and levels of precision considered in our
numerical experiments.

Note that αp(‖X‖1) can be estimated efficiently, without explicitly forming any
powers of X using the block 1-norm estimation algorithm of Higham and Tisseur [33],
which requires only O(n2) flops. Since only an estimate of ‖Xp‖1/p is computed there
is no need to use high precision for this sub-problem, so we carry out this computa-
tion in double precision (or single precision if the requested precision is lower than
double), in order to exploit the floating point hardware. When the matrix dimension
is small and the working precision is not too high the cost of estimating αp(T −I) can
nevertheless be non-negligible. Rather than computing αp for the optimal value p∗ in
(3.8), we compute it only for the largest possible p. Some justification for this choice
comes from the fact that despite a sometimes considerably nonmonotonic behaviour,
the sequence {αp(X)}p∈N is typically roughly decreasing [2]. We denote the α value
corresponding to the diagonal Padé approximant rm by

α̃rm(X) = αp(X), p =
⌊
(1 +

√
5 + 8m)/2

⌋
,

and that corresponding to the truncated Taylor series tm by

α̃tm(X) = αp(X), p =
⌊
(1 +

√
5 + 4m)/2

⌋
.

Thus (4.1) is used in the form

(4.2) | log(1− α̃fmmax
(T − I))− fmmax(−α̃fmmax

(T − I))| < uψ(T ).

We now discuss the cost of the algorithm, beginning with the case of diagonal
Padé approximants. Higham [29] considered several ways of evaluating the rational

7



Algorithm 4.1 Schur–Padé algorithm for matrix logarithm and Fréchet derivative.

Given A ∈ Cn×n with no eigenvalues on R− this algorithm computes X = logA, and
optionally the Fréchet derivative Y ≈ Dlog(A)[E], in floating point arithmetic with
unit roundoff u using inverse scaling and squaring with Padé approximation. smax

is the maximum allowed number of square roots and mmax the maximum allowed
approximant degree. The logical parameter use taylor determines whether a diag-
onal Padé approximant or a Taylor approximant is to be used. ψ(X) provides an
approximation to ‖ logX‖1.

1: Compute the complex Schur decomposition A = QTQ∗.
2: if use taylor then
3: f = t and ζ(m) is defined as in (4.6). . Taylor approximant.
4: else
5: f = r, ζ(m)← m− 2 . Padé approximant.
6: end if
7: E ← Q∗EQ
8: T0 ← T
9: s← 0

10: while max1≤i≤n(|
√
tii − 1|) > 1 and s < smax do

11: [T, T ,E, s]← sqrtm(T,E, s)
12: end while
13: while | log(1− α̃fmmax

(T ))− fmmax(−α̃fmmax
(T ))| ≥ uψ(T ) and s < smax do

14: [T, T ,E, s]← sqrtm(T,E, s)
15: end while
16: m̃← min{m ≤ mmax : | log(1− α̃fm(T ))− fm(−α̃fm(T ))| < uψ(T )}
17: while | log(1− α̃fζ(m̃)(T )/2)− fζ(m̃)(−α̃fζ(m̃)(T )/2)| < uψ(T ) and s < smax do

18: [T, T ,E, s]← sqrtm(T,E, s)
19: m̃← min{m ≤ m̃ : | log(1− α̃fm(T ))− fm(−α̃fm(T ))| < uψ(T )}
20: end while
21: diag(T, 1)← diag(T

1/2s

0 , 1) using [32, eq. (5.6)].
22: diag(T )← diag(T0)1/2

s − I using [1, Alg. 2].
23: X ← 2sfm̃(T )
24: diag(T )← log(diag(T0))
25: Update the superdiagonal of T using [30, eq. (11.28)].
26: X ← QXQ∗

27: Y ← 2sQf ′m̃(T )Q∗

28: function sqrtm(T ∈ Cn×n, E ∈ Cn×n, s ∈ N))
29: T ← T 1/2 using [9, Alg. 6.3].
30: E ← X, where X is the solution of TX +XT = E.
31: return T, T − I, E, s+ 1

function rm(X). The partial fraction form

(4.3) rm(A) =

m∑
j=1

γ
(m)
j (I + δ

(m)
j A)−1A,

where γ
(m)
j and δ

(m)
j are the weights and nodes, respectively, of the m-point Gauss–

8



Legendre quadrature rule on [0, 1], was found to provide the best balance between
efficiency and numerical stability, and it also has the advantage of allowing parallel
evaluation. For a triangular matrix, the evaluation of (4.3) requires mn3/3 flops
and the computation of a matrix square root costs n3/3 flops. Thus, when diagonal
approximants are used, the algorithm requires 25n3 flops for the computation of the
Schur decomposition, χr(s,m) := (s + m) n3/3 for the inverse scaling and squaring
phase, and 3n3 flops to recover the solution.

Since χr(s,m) = χr(s+1,m−1), an additional square root will save computational
effort only if the degree of the approximant decreases by at least 2, in which case the
overall reduction in cost is at least n3/3 flops. In view of the approximation [3]

(4.4) αp(A
1/2s+1

− I) ≈ αp(A
1/2s − I)

2
,

an additional square root is taken only if

(4.5) | log(1− α̃fζ(m̃)(T − I)/2)− fζ(m̃)(−α̃fζ(m̃)(T − I)/2)| < uψ(T ),

with f ≡ r and ζ (m̃) = m̃ − 2, where m̃ is the current degree of the approximant
(defined in line 16 of Algorithm 4.1).

Turning to Taylor series approximants, in order to evaluate the truncated Tay-
lor series the algorithm uses the Paterson–Stockmeyer method, which among the
four methods for polynomial evaluation considered in [30, Thm. 4.5] is the one that
minimizes the number of matrix-matrix multiplications while satisfying a forward
error bound of the same form as for the other methods. The computational cost
of the square roots and Taylor approximant evaluation is approximately χt(s,m) =
(s+ 2

√
m) n3/3 flops. Simple algebraic manipulations show that

χt(s,m) = χt

(
s+ 1,

(√
m− 1

2

)2
)
,

and thus an additional square root is taken only if (4.5) holds with f ≡ t and

(4.6) ζ (m̃) =

⌈(√
m̃− 1

2

)2
⌉
− 1,

which guarantees that ζ(m̃) < (
√
m̃− 1

2 )2. Since the cost function χt is monotonic in
both arguments, the reduction in the number of flops will be at least

(4.7) χt(s, m̃)− χt(s+ 1, ζ(m̃)) =
2n3

3

(
√
m̃−

(⌈(√
m̃− 1

2

)2
⌉
− 1

)1/2

− 1

2

)
,

which depends only on m̃. Unlike in the Padé case, we cannot put a useful lower
bound on the decrease in flops resulting from an extra square root.

For both types of approximant we can perform a binary search to find the smallest
m∗ ∈ [1, m̃] such that

(4.8) | log(1− α̃fm∗(T − I))− fm∗(−α̃fm∗(T − I))| < uψ(T ),

which requires the estimation of ‖Xp‖1/p1 for no more than 2 log2 m̃− 1 values of p.
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If the Frechét derivative is needed then each time a square root is taken the
algorithm solves an additional Sylvester equation, as detailed in [30, sec. 11.8]. Once
the optimal values for s and m̃ have been found, in order to increase the accuracy
the algorithm recomputes the first superdiagonal of T from T0, making use of the
identity [32, eq. (5.6)], and then the main diagonal of T − I, by applying [1, Alg. 2]
to the diagonal of T0. The algorithm can be easily adapted to compute the adjoint of
the Frechét derivative of A in the direction E, by replacing the increment E by E∗

and returning Y ∗ [4].
Algorithm 4.1 can be extended to compute an estimate of the 1-norm condition

number of the matrix logarithm, using the same approach as in [4, Alg. 4.1]. Since in
this case the Frechét derivative of the matrix logarithm of A and its adjoint need to
be computed in several directions, but neither s nor m̃ depend on E, the algorithm
can be modified to store the matrix T after each square root is taken, and then use
it to solve several Sylvester cascades for different matrices E. If η is the number of
bits required to store a single entry of the matrix, then this modification increases
the memory requirement of the algorithm by about η(s − 1)n2/2 bits if the upper
triangular pattern is exploited.

5. Transformation-free algorithm. Multiprecision computing environments
often provide just a few linear algebra kernels. For example, version 7.1 of the Sym-
bolic Math Toolbox [46] does not support the Schur decomposition in its variable
precision arithmetic (VPA). In this section we therefore present a version of Algo-
rithm 4.1 that does not require the computation of the Schur decomposition and
builds solely on level 3 BLAS operations and multiple right-hand side system solves.

The algorithm, whose pseudocode is given in Algorithm 5.2, builds on the trans-
formation-free algorithms [3, Alg. 5.2], [14, Alg. 7.1], and again makes use of the
improved forward error bound (3.6).

The algorithm starts by taking enough square roots to guarantee that the Padé
or Taylor approximants will produce a relative forward error below the unit roundoff
threshold. Since in this case the matrix is not triangular, to compute square roots
the algorithm employs the scaled Denman–Beavers iteration (in product form) [30,
eq. (6.29)], whose computational cost depends on the number of iterations and is thus
not known a priori. However, it has been observed [30, sec. 11.5.2] that in practice
up to ten iterations are typically required for the first few square roots, but just four
or five are enough in the later stages. Since the cost of one iteration is 4n3 flops, it is
customary to consider that the computation of a square root requires 16n3 flops. On
the other hand, evaluating the diagonal Padé approximant in partial fraction form
requires 8mn3/3 if the matrix is not upper triangular. The cost of the algorithm is
χr(s,m) flops, where

χr(s,m) =

(
8m

3
+ 16s

)
n3,

and it can be readily seen that χr(s,m) = χr(s + 1,m − 6), and thus an additional
square root is taken if (4.5) holds for f ≡ r, T = A, and ζ(m̃) = m̃ − 7. Using
the Patterson–Stockmeyer scheme to evaluate the truncated Taylor expansion, we
get the asymptotic cost χt(s,m) = 4(

√
m + 4s)n3, which satisfies χt(s,m) = χt(s +

1, (
√
m− 4)

2
). In this case, an additional square root will be worthwhile if (4.5) holds

for f ≡ t, T = A, and
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Algorithm 5.2 Transformation-free matrix logarithm with Fréchet derivative

Given A ∈ Cn×n with no eigenvalues on R− this algorithm computes X = logA,
in floating point arithmetic with unit roundoff u using inverse scaling and squaring
with Padé approximation. smax is the maximum allowed number of square roots and
mmax the maximum allowed approximant degree. The logical parameter use taylor

determines whether a diagonal Padé approximation or a Taylor approximation is to
be used. ψ(X) provides an approximation to ‖ logX‖1.

1: Compute the complex Schur decomposition A = QTQ∗.
2: if use taylor then
3: f = t and ζ(m) is defined as in (5.1). . Taylor approximant.
4: else
5: f = r, ζ(m)← m− 7 . Padé approximant.
6: end if
7: s← 0
8: A← A− I
9: Z ← A

10: P ← I
11: while | log(1− α̃fm(A))− fm(−α̃fm(A))| ≥ uψ(A) and s < smax or ‖A‖1 > 1 do
12: [A,A, P, s]← sqrtm db(A,P, s)
13: end while
14: m̃← min{m ≤ mmax : | log(1− α̃fm(A))− fm(−α̃fm(A))| < uψ(A)}
15: while | log(1− α̃fζ(m̃)(A)/2)− fζ(m̃)(−α̃fζ(m̃)(A)/2)| < uψ(A) and s < smax do

16: [A,A, P, s]← sqrtm db(A,P, s)
17: m̃← min{m ≤ m̃ : | log(1− α̃fm(A))− fm(−α̃fm(A))| < uψ(A)}
18: end while
19: if s < 2 then
20: Y ← A
21: else
22: Y ← ZP−1

23: end if
24: X ← 2sfm̃(Y )
25: return X

26: function sqrtm db(A ∈ Cn×n, P ∈ Cn×n, s ∈ N)
27: A← A1/2 using the iteration in [30, eq. (6.29)].
28: if s > 1 then
29: P ← P (A+ I)
30: end if
31: return A,A− I, P, s

(5.1) ζ(m̃) =

⌈(√
m̃− 4

)2⌉
− 1,

which guarantees a reduction in the number of flops of at least

(5.2) χt(s, m̃)− χt(s+ 1, ζ(m̃)) = 4n3
(√

m̃−
(⌈(√

m̃− 4
)2⌉
− 1

)1/2

− 4

)
.
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To reduce the chances of numerical cancellation in the computation of A1/2s − I,
the matrix form of [1, Alg. 2] is used, as in [3].

Note that Algorithm 5.2 is not suitable for the computation of the Fréchet deriva-
tive of the matrix logarithm, nor for the estimation of its condition number. Standard
methods for the solution of Sylvester equations [7], [22] start by computing the Schur
decomposition of one or both the coefficients of the matrix equation, and are thus not
suitable for a framework where a multiprecision implementation of the QR algorithm
is not available. The alternative of converting the Sylvester equation to an n2 × n2
structured linear system Ax = b and solving by Gaussian elimination has too high a
computational cost to be useful in this context.

6. Numerical experiments. In this section we describe numerical tests with
the new multiprecision algorithms for the matrix logarithm. All the experiments were
performed using the 64-bit version of MATLAB 2017a on a machine equipped with an
Intel I5-5287U processor running at 2.90GHz. For the underlying computations the
implementations exploit the overloaded methods from the Multiprecision Computing
Toolbox (version 4.3.2.12168) [43] to run in different precisions.

We test the following algorithms.
• logm mct: the (overloaded) logm function from the Multiprecision Comput-

ing Toolbox, which implements a blocked version of the Schur–Parlett algo-
rithm [16]. After computing the complex Schur decomposition, a blocking of
the matrix is computed according to [16], [30, sec. 9.3]. For each diagonal
block Tii of the triangular Schur factor the algorithm repeatedly takes the
square root until the spectrum of Tii − I lies within the unit ball centered
at 1. Then it chooses the degree of the (diagonal) Padé approximant as the
smallest m so that the bound in (1.3) is less than the unit roundoff. Since this
strategy does not optimize the balance between the number of square roots
and the Padé degree it tends to choose higher degrees than our algorithm.
The off-diagonal blocks are obtained via the block Schur–Parlett recurrence.

• logm agm: an algorithm for the computation of the matrix logarithm based
on the arithmetic-geometric mean iteration. In particular, we use the re-
sult in [12, Thm. 8.2], which gives the approximation logA ≈ log(4/ε) −
(π/2) AGM(εA)−1, where ε =

√
u/‖A‖F and AGM(A) is the arithmetic-

geometric mean iteration, which we compute by means of the stable double
recursion [12, eqs. (5.2), (5.3)] with stopping criterion ‖Pk − I‖F ≤ u‖A‖F .
We do not implement the optimization in [12, sec. 7], because it is precision
dependent and aimed at speed rather than accuracy.

• logm pade: the version of Algorithm 4.1 employing diagonal Padé approxi-
mants and relative error bounds, that is, ψ(X) = ‖X − I‖1.

• logm pade abs: the version of Algorithm 4.1 employing diagonal Padé ap-
proximants and absolute error bounds, that is, ψ(X) = 1.

• logm tayl: the version of Algorithm 4.1 employing truncated Taylor approx-
imants and relative error bounds, that is, ψ(X) = ‖X − I‖1.

• logm tayl abs: the version of Algorithm 4.1 employing truncated Taylor
approximants and absolute error bounds, that is, ψ(X) = 1.

• logm tfree pade: the transformation-free Algorithm 5.2 employing diagonal
Padé approximants and relative error bounds, that is, ψ(X) = ‖X − I‖1.

• logm tfree tayl: the transformation-free Algorithm 5.2 employing trun-
cated Taylor approximants and relative error bounds, that is, ψ(X) = ‖X −
I‖1.
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• logm: the built-in MATLAB function that implements the algorithms for real
and complex matrices from [3], [4] and is designed for double precision only.

In the implementations, mmax and smax are set to 200 and 100, for diagonal Padé
approximants, and to 400 and 100, for truncated Taylor series, respectively.

The Gauss–Legendre nodes and weights in (4.3) are computed by means of the
GaussLegendre method of the mp class provided by the Multiprecision Computing
Toolbox. This algorithm is based on Newton root-finding [21] and computes the
nodes and weights of the quadrature formula of order m in O(m) flops. This is more
efficient than the Golub–Welsh algorithm [23], which is based on the computation of
the eigensystem of a tridiagonal matrix and cost O(m2) flops.

We note that version 7.1 of the Symbolic Math Toolbox provides an overloaded
version of the MATLAB function logm, but for several of our test matrices this func-
tion either gives an error or fails to return an answer, so we exclude it from our
tests.

We evaluate the forward errors ‖X− X̂‖1/‖X‖1, where X̂ is a computed solution
and X ≈ logA is a reference solution computed with logm pade using 8d decimal
significant digits, where d is the number of digits used for the computation of X̂.

To gauge the forward stability of the algorithms we plot the quantity κlog(A)u,
where κlog(A) is the 1-norm condition number of the matrix logarithm of A estimated
using funm_condest1 from the Matrix Function Toolbox [28], with the aid of the
Fréchet derivatives in Algorithm 4.1.

We use a test set of 64 matrices, of sizes ranging from 2×2 to 100×100, including
matrices from the literature of the matrix logarithm and from the MATLAB gallery

function.

6.1. Comparison with logm in double precision. Our first experiment com-
pares logm pade and logm tfree pade running in IEEE double precision (u = 2−53)
with the built-in MATLAB function logm, in order to check that the new algorithms
performs well in double precision. Figure 6.1a shows the forward errors sorted by de-
creasing condition number of the matrix logarithm. Figure 6.1b reports the same data
in the form of a performance profile, which we compute with the MATLAB function
perfprof described in [26, sec. 26.4]. Here, for each method M the height of the line
at θ represents the fraction of matrices in the test set for which the relative forward
error of M is at most θ times that of the algorithm that delivers the most accurate
result. In our performance profiles we use the technique of Dingle and Higham [19]
to rescale errors smaller than the unit roundoff in order to avoid abnormally small
errors skewing the profiles.

The results show that logm pade and logm produce errors bounded approximately
by κlog(A)u, that is, they behave in a forward stable manner. The same is true of
logm tfree pade except for one matrix, and this algorithm is most often the most
accurate, while also being the least reliable, as shown by the performance profile.

Figure 6.1c shows that the computational cost of logm pade can be higher than
that of logm, but overall is comparable with the state of the art.

As a further experiment we sought to maximize the ratios between the forward
errors of logm and logm pade, using the multidirectional search method of Dennis
and Torczon [17], implemented in the mdsmax function in the Matrix Computation
Toolbox [27]. Initializing that method with random 10× 10 matrices with no positive
real eigenvalues we have not been able to find a matrix for which either ratio of
errors exceeds 1.4. This provides further evidence that the two algorithms deliver
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(a) Forward errors.
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(b) Performance profile for data in (a).
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Figure 6.1: Top: forward errors of logm pade, logm tfree pade, and logm on the test
set, all running in IEEE double precision arithmetic. Bottom left: performance profile.
Bottom right: on the same test set, the number of square roots and multiple right-
hand side linear system solves for logm pade divided by the corresponding number
for logm.

similar accuracy.

6.2. Relative and absolute error. Now we show the importance of using a
relative error bound as opposed to an absolute bound, as was used in earlier algorithms
intended for double precision [13], [14], [18], [38]. Figure 6.2 reports how the relative
forward error to unit roundoff ratio varies, as the precision increases, for logm pade,
logm pade abs, logm tayl and logm tayl abs, on three of our test matrices.

The ratio for logm pade and logm tayl is influenced by the conditioning of the
problem, which is below 100 for these matrices, but tends to remain stable as the work-
ing precision increase. The ratio for the algorithms based on an absolute error bounds,
on the other hand, grows exponentially, and we can conclude that logm pade abs and
logm tayl abs are unstable.
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Figure 6.2: Forward error divided by unit roundoff u = 2dlog2(10
−d)e, where the number

of decimal significant digits d is shown on the x-axis, for three matrices in the test
set.

6.3. Experiments at higher precisions. Now we compare the accuracy of Al-
gorithm 4.1, Algorithm 5.2 and several competing methods at four different precisions.
Figure 6.3a plots, for the matrices in our test set sorted by decreasing condition num-
ber, the relative forward errors of logm mct, logm agm, logm tayl, logm tfree tayl,
logm pade, and logm tfree pade against κlog(A)u. If the forward error of an algo-
rithm falls outside the range reported in the graph, we put the corresponding marker
on the nearest edge (top or bottom) of the plot. The right-hand column of Figure 6.3
reports the same data in the form of performance profiles.

For a working precision of 16 digits (the results for which are not shown here),
the six algorithms exhibit a similar behaviour. As illustrated in Figure 6.3c and 6.3e,
as the number of significant digits increases, logm mct loses accuracy on almost 40
percent of the matrices, and the accuracy of the solution degrades quickly with respect
to κlog(A)u. The loss of accuracy of logm agm is not as severe, but it affects the entire
dataset and is particularly noticeable for well-conditioned matrices.

The new algorithms show a forward stable behavior, since the forward error re-
mains less than or only slightly larger than κlog(A)u as the working precision increases.
On our test set, Algorithm 4.1 is more accurate than Algorithm 5.2, and the perfor-
mance of logm tayl and logm pade is almost identical whereas logm tfree tayl is
more accurate than logm tfree pade and often provides the most accurate result on
the best-conditioned of the test matrices.

6.4. Code profiling. Table 6.1 compares the execution times of our implemen-
tations of logm tayl and logm pade, profiling the four main operations performed by
the algorithms: Schur decomposition, square roots, evaluation of the bound to deter-
mine the degree of the Padé approximant to be used (which includes computation of
the norm estimates used in forming the αp), and evaluation of the approximant itself.
We consider the matrices
A = expm(gallery(’chebvand’, n))

B = expm(gallery(’randsvd’, n))

C = expm(gallery(’chow’, n))

The unit roundoff is 2−1701, which roughly gives 512 decimal significant digits.
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Figure 6.3: Forward errors for 64, 256, and 1024 digit precisions.
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Table 6.1: Execution time breakdown of logm tayl and logm pade, run with u =
2−1701 on three matrices of increasing size. The table reports, for each algorithm,
the number of square roots (s), the degree of the Padé approximant (m), the total
execution time in seconds (Ttot), and the percentage of time spent computing the
Schur decomposition (Tsch), taking the square roots (Tsqrt), evaluating the scalar
bound (Tbnd), and evaluating the Taylor and Padé approximants (Teval).

logm tayl logm pade

n s m Tsch Tsqrt Tbnd Teval Ttot s m Tsch Tsqrt Tbnd Teval Ttot

A 10 41 40 18% 45% 4% 33% 0.4 18 39 9% 47% 11% 32% 0.5
20 41 40 34% 37% 2% 28% 1.0 18 39 28% 29% 5% 38% 1.2
50 40 40 53% 32% 0% 15% 9.0 17 40 54% 16% 1% 30% 8.9

100 41 40 56% 33% 0% 11% 63.0 18 38 59% 15% 0% 25% 59.7
200 41 40 57% 34% 0% 10% 460.3 20 35 60% 18% 0% 22% 432.1
500 41 40 41% 47% 0% 12% 5053.2 19 37 46% 24% 0% 31% 4550.7

B 10 44 40 20% 48% 5% 27% 0.3 21 40 9% 52% 12% 27% 0.5
20 45 40 31% 35% 2% 32% 1.1 24 36 25% 31% 15% 29% 1.2
50 46 40 45% 40% 0% 15% 8.0 24 37 45% 23% 2% 30% 7.9

100 46 40 48% 40% 0% 12% 56.9 24 38 50% 22% 0% 28% 54.3
200 47 40 48% 42% 0% 10% 424.3 24 39 51% 23% 0% 26% 400.3
500 48 40 37% 51% 0% 11% 5300.1 25 39 41% 29% 0% 30% 4837.7

C 10 45 40 27% 43% 4% 27% 0.4 24 36 11% 40% 26% 23% 0.6
20 48 38 37% 34% 1% 28% 1.2 24 37 32% 30% 9% 29% 1.3
50 48 39 52% 35% 0% 12% 9.5 24 39 53% 20% 1% 26% 9.3

100 48 40 56% 34% 0% 10% 69.5 26 37 58% 20% 0% 22% 66.1
200 49 40 55% 36% 0% 9% 510.5 27 37 58% 21% 0% 21% 482.0
500 54 40 47% 44% 0% 9% 6952.3 31 37 51% 27% 0% 22% 6595.6

In both cases, evaluating the scalar bound (Tbnd) is relatively expensive for small
matrices, but its impact drops as the size of the matrices increases and it is typically
negligible for matrices of size larger than 100. We can see that logm tayl needs
approximately twice as many square roots as logm pade on these matrices, and that
while the evaluation time (Teval) is larger for logm pade this algorithm is slightly
faster in most cases.

7. Conclusions. The state of the art inverse scaling and squaring algorithms
for the matrix logarithm and the matrix exponential, implemented in the MATLAB
functions logm and expm, are tuned specifically for double or single precision arith-
metic, via the use of pre-computed constants obtained from backward error bounds.
This approach does not extend in any convenient way to a multiprecision computing
environment. Here we have shown that by using forward error bounds we can obtain
algorithms for the matrix logarithm that perform in a forward stable way across a
wide range of precisions. The Schur-based algorithms, based on Algorithm 4.1, are
competitive with logm when run in double precision and are superior to existing algo-
rithms at higher precisions. For computing environments lacking a variable precision
Schur decomposition we recommend the transformation-free Algorithm 5.2.

The algorithms rely on three innovations. First, we have derived a new sharper
version of the forward error bound of Kenney and Laub [39] that can be much smaller
for nonnormal matrices. Second, we have implemented the bound in the form of
a relative error bound, as we found that the absolute error bounds used in some
previous algorithms yield poor results at high precision due to the need for X in the
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approximations to log(I + X) to have a small norm. Third, we have devised a new
strategy for choosing the degree of the approximants and the number of square roots.
We investigated both Padé approximants and Taylor approximants and found that
there is very little to choose between them in speed or accuracy.

We are currently looking at extending the ideas herein to other matrix functions,
including the matrix exponential and real matrix powers.
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