## 2016.33: A Block Krylov Method to Compute the Action of the Frechet Derivative of a Matrix Function on a Vector with Applications to Condition Number Estimation

2016.33:
Peter Kandolf and Samuel D. Relton
(2017)
*A Block Krylov Method to Compute the Action of the Frechet Derivative of a Matrix Function on a Vector with Applications to Condition Number Estimation.*
SIAM J. Sci. Comput., 39 (4).
A1416-A1434.

*This is the latest version of this eprint.*

Full text available as:

PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader 344 Kb |

DOI: 10.1137/16M1077969

## Abstract

We design a block Krylov method to compute the action of the FrÃ©chet derivative of a matrix function on a vector using only matrix-vector products, i.e., the derivative of $f(A)b$ when $A$ is subject to a perturbation in the direction $E$. The algorithm we derive is especially effective when the direction matrix $E$ in the derivative is of low rank, while there are no such restrictions on $A$. Our results and experiments are focused mainly on FrÃ©chet derivatives with rank 1 direction matrices. Our analysis applies to all functions with a power series expansion convergent on a subdomain of the complex plane which, in particular, includes the matrix exponential. We perform an a priori error analysis of our algorithm to obtain rigorous stopping criteria. Furthermore, we show how our algorithm can be used to estimate the 2-norm condition number of $f(A)b$ efficiently. Our numerical experiments show that our new algorithm for computing the action of a FrÃ©chet derivative typically requires a small number of iterations to converge and (particularly for single and half precision accuracy) is significantly faster than alternative algorithms. When applied to condition number estimation, our experiments show that the resulting algorithm can detect ill-conditioned problems that are undetected by competing algorithms.

Item Type: | Article |
---|---|

Uncontrolled Keywords: | matrix function, matrix exponential, Krylov subspace, block Krylov subspace, Frechet derivative, condition number |

Subjects: | MSC 2000 > 65 Numerical analysis |

MIMS number: | 2016.33 |

Deposited By: | Dr Samuel Relton |

Deposited On: | 12 August 2017 |

### Available Versions of this Item

- A Block Krylov Method to Compute the Action of the Frechet Derivative of a Matrix Function on a Vector with Applications to Condition Number Estimation (deposited 12 August 2017)
**[Currently Displayed]**

Download Statistics: last 4 weeks

Repository Staff Only: edit this item