You are here: MIMS > EPrints
MIMS EPrints

2006.97: Plancherel measure for GL(n,F) and GL(m,D): Explicit formulas and Bernstein decomposition

2006.97: Anne-Marie Aubert and Roger Plymen (2005) Plancherel measure for GL(n,F) and GL(m,D): Explicit formulas and Bernstein decomposition. Journal of Number Theory, 112. pp. 26-66. ISSN 0022-314X

Full text available as:

PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
339 Kb

DOI: 10.1016/j.jnt.2005.01.005

Abstract

Let F be a nonarchimedean local field, let D be a division algebra over F, let GL(n) = GL(n,F). Let $\nu$ denote Plancherel measure for GL(n). Let $\Omega$ be a component in the Bernstein variety $\Omega(\GL(n))$. Then $\Omega$ yields its fundamental invariants: the cardinality q of the residue field of F, the sizes m_1,..., m_t, exponents e_1,...,e_t, torsion numbers r_1,...,r_t$, formal degrees d_1,...,d_t and conductors f_{11},..., f_{tt}. We provide explicit formulas for the Bernstein component $\nu_{\Omega}$ of Plancherel measure in terms of the fundamental nvariants. We prove a transfer-of-measure formula for $\GL(n)$ and establish some new formal degree formulas. We derive, via the Jacquet-Langlands correspondence, the explicit Plancherel formula for GL(m,D).

Item Type:Article
Uncontrolled Keywords:General linear group over a local nonarchimedean field. Plancherel measure. Explicit formulas.
Subjects:MSC 2000 > 11 Number theory
MIMS number:2006.97
Deposited By:Professor Roger Plymen
Deposited On:18 May 2006

Download Statistics: last 4 weeks
Repository Staff Only: edit this item