You are here: MIMS > EPrints
MIMS EPrints

2006.156: Iterative refinement enhances the stability of QR factorization methods for solving linear equations

2006.156: Nicholas J. Higham (1991) Iterative refinement enhances the stability of QR factorization methods for solving linear equations. BIT Numerical Mathematics, 31. pp. 447-468. ISSN 1572-9125

Full text available as:

PDF - Archive staff only - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
1340 Kb

DOI: 10.1007/BF01933262


Iterative refinement is a well-known technique for improving the quality of an approximate solution to a linear system. In the traditional usage residuals are computed in extended precision, but more recent work has shown that fixed precision is sufficient to yield benefits for stability. We extend existing results to show that fixed precision iterative refinement renders anarbitrary linear equations solver backward stable in a strong, componentwise sense, under suitable assumptions. Two particular applications involving theQR factorization are discussed in detail: solution of square linear systems and solution of least squares problems. In the former case we show that one step of iterative refinement suffices to produce a small componentwise relative backward error. Our results are weaker for the least squares problem, but again we find that iterative refinement improves a componentwise measure of backward stability. In particular, iterative refinement mitigates the effect of poor row scaling of the coefficient matrix, and so provides an alternative to the use of row interchanges in the HouseholderQR factorization. A further application of the results is described to fast methods for solving Vandermonde-like systems.

Item Type:Article
Uncontrolled Keywords: Iterative refinement - linear system - least squares problem - QR factorization - Gaussian elimination - partial pivoting - rounding error analysis - backward error - componentwise error bounds - Householder transformations - Givens transformations - confluent Vandermonde-like matrices
Subjects:MSC 2000 > 15 Linear and multilinear algebra; matrix theory
MSC 2000 > 65 Numerical analysis
MIMS number:2006.156
Deposited By:Miss Louise Stait
Deposited On:28 June 2006

Download Statistics: last 4 weeks
Repository Staff Only: edit this item