You are here: MIMS > EPrints
MIMS EPrints

2007.167: Lyapunov exponents for linear delay equations in arbitrary phase spaces

2007.167: Markus Riedle (2005) Lyapunov exponents for linear delay equations in arbitrary phase spaces. Integral Equations and Operator Theory, 54 (2). pp. 259-278. ISSN 0378-620x

Full text available as:

PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
269 Kb

DOI: 10.1007/s00020-004-1351-3

Abstract

A linear integral equation with infinite delay is considered where the admissible function space $$\mathcal{B}$$ of initial conditions is as usually only described axiomatically. Merely using this axiomatic description, the long time behavior of the solutions is determined by calculating the Lyapunov exponents. The calculation is based on a representation of the solution in the second dual space of $$\mathcal{B}$$ and on a connection between the asymptotic behavior of the solutions of the integral equation under consideration and its adjoint equation subject to the spectral decomposition of the space of initial functions. We apply the result to an example of a stochastic differential equation with infinite delay.

Item Type:Article
Uncontrolled Keywords:Lyapunov exponents - differential equations with infinite delay - weak*-integral - abstract phase space - variation of constants formula - stochastic differential equations with delay
Subjects:MSC 2000 > 34 Ordinary differential equations
MIMS number:2007.167
Deposited By:Mrs Louise Healey
Deposited On:19 November 2007

Download Statistics: last 4 weeks
Repository Staff Only: edit this item