On the problem of stochastic integral representations of functions of the Brownian motion II

Graversen, S. and Shiryaev, A. N. and Yor, M.

2007

MIMS EPrint: 2007.173

Manchester Institute for Mathematical Sciences
School of Mathematics
The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary
School of Mathematics
The University of Manchester
Manchester, M13 9PL, UK

ISSN 1749-9097
ON THE PROBLEM OF STOCHASTIC INTEGRAL REPRESENTATIONS OF FUNCTIONALS OF THE BROWNIAN MOTION. II

S. GRAVERSEN†, A. N. SHIRYAEV‡, AND M. YOR§

(Translated by A. A. Sergeev)

Abstract. In the first part of this paper [A. N. Shiryaev and M. Yor, Theory Probab. Appl. 48 (2004), pp. 304–313], a method of obtaining stochastic integral representations of functionals \(S(\omega) \) of Brownian motion \(B = (B_t)_{t \geq 0} \) was stated. Functionals \(\max_{t \leq T} B_t \) and \(\max_{t \leq T-a} B_t \), where \(T-a = \inf\{t : B_t = -a\} \), \(a > 0 \), were considered as an illustration. In the present paper we state another derivation of representations for these functionals and two proofs of representation for functional \(\max_{t \leq g_T} B_t \), where (non-Markov time) \(g_T = \sup\{0 \leq t \leq T : B_t = 0\} \) are given.

Key words. Brownian motion, Itô integral, max-functionals, stochastic integral representation

DOI. 10.1137/S0040585X97982190

2'. The second derivation of the representation for \(S_T = \max_{t \leq T} B_t \).

2.1. According to relation (4) of the first part of the paper,

\[
S_T = ES_T + 2 \int_0^T \left[1 - \Phi\left(\frac{S_t - B_t}{\sqrt{T - t}} \right) \right] dB_t
\]

or, equivalently,

\[
S_T = ES_T + \int_0^T \Psi\left(\frac{S_t - B_t}{\sqrt{T - t}} \right) dB_t,
\]

where \(S_t = \max_{u \leq t} B_u \), \(ES_t = \sqrt{2T/\pi} \), and \(\Psi(x) = 2[1 - \Phi(x)] \) (\(= 2P\{\mathcal{N}(0,1) > x\} \), \(\mathcal{N}(0,1) \) having the standard Gaussian distribution).

2.2. Let us demonstrate that for all \(t \geq 0 \) the following relation holds:

\[
E(S_T | \mathcal{F}_t) = \sqrt{\frac{2}{\pi}} T + \int_0^{T \wedge t} \Psi\left(\frac{S_u - B_u}{\sqrt{T - u}} \right) dB_u,
\]

which implies, obviously, formula (45) too. (Recall that \(\mathcal{F}_t = \sigma(B_s, s \leq t) \) is the \(\sigma \)-algebra, generated by the Brownian motion and completed with sets of \(P \)-probability zero from \(\sigma \)-algebra \(\mathcal{F} \) of the original complete probability space \((\Omega, \mathcal{F}, P) \).)
Fix \(0 \leq t < T \). Then, according to (5),

\[
E[S_T | F_t] = E\left(\int_0^\infty E[I(a < S_t) | F_t] \, da \right) = \int_0^\infty E[I(T_a < T) | F_t] \, da
\]

\[
= \int_0^\infty \left(I(T_a \leq t) + E[I(t < T_a < T) | F_t] \right) \, da
\]

\[
= \int_0^\infty I(T_a \leq t) \, da + \int_0^\infty P(t < T_a < T | F_t) \, da
\]

\[(47)\]

\[
= S_t + \int_0^\infty P(t < T_a < T | F_t) \, da.
\]

On the set \(\{ t < T_a \} \), according to the Markov property and relations (14), (15), we have

\[
P(t < T_a < T | F_t) = P(\exists s \in (t, T): B_s > a | F_t)
\]

\[
= P_B(\exists s \in (0, T-t): B_s > a | \{ T_a < T-t \})
\]

\[(48)\]

\[
= \int_0^{T-t} \frac{a - B_t}{\sqrt{2\pi s^3}} \exp\left\{ -\frac{(a-B_t)^2}{2s} \right\} \, ds,
\]

where \(P_x(\cdot) \) is the distribution of the Brownian motion starting at point \(x \).

From (47) and (48) we find that

\[
E[S_T | F_t] = S_t + \int_0^\infty \int_0^{T-t} \frac{a - B_t}{\sqrt{2\pi s^3}} \exp\left\{ -\frac{(a-B_t)^2}{2s} \right\} \, ds \, da
\]

\[
= S_t + \int_0^{T-t} \frac{1}{\sqrt{2\pi s}} \left(\int_s^\infty \frac{a - B_t}{\sqrt{2\pi s^2}} \exp\left\{ -\frac{(a-B_t)^2}{2s} \right\} \, da \right) \, ds
\]

\[(49)\]

\[
= S_t + \int_0^{T-t} \frac{1}{\sqrt{2\pi s}} \exp\left\{ -\frac{(S_t - B_t)^2}{2s} \right\} \, ds = S_t + H(S_t - B_t, t),
\]

where

\[
H(x, t) = \int_0^{T-t} \frac{1}{\sqrt{2\pi s}} e^{-x^2/(2s)} \, ds, \quad x \in \mathbb{R}, \quad 0 \leq t < T.
\]

It is obvious that

\[(50)\]

\[
H(0, 0) = \int_0^T \frac{1}{\sqrt{2\pi s}} \, ds = \sqrt{\frac{2T}{\pi}}
\]

and for \(x > 0 \) and \(0 < t < T \)

\[(51)\]

\[
\frac{\partial}{\partial x} H(x, t) = -\int_0^{T-t} \frac{x}{\sqrt{2\pi s}} e^{-x^2/(2s)} \, ds = -P\{T_x < T - t\} = -\Psi\left(\frac{x}{\sqrt{T-t}} \right).
\]

Denoting \(X_t = S_t - B_t \) and applying Itô’s formula to \(H(X_t, t) \), we find that (in differential form)

\[
dH(X_t, t) = \frac{\partial}{\partial t} H(X_t, t) \, dt + \frac{\partial}{\partial x} H(X_t, t) \, dX_t + \frac{1}{2} \frac{\partial^2}{\partial x^2} H(X_t, t) \, d[X]_t,
\]
FUNCTIONALS OF BROWNIAN MOTION. II

where \((X_t)_{t \leq T}\) is the square variation of the process \((X_t)_{t \leq T}\). It is obvious that in the case in question \(X_t = B_t = t\). So (in the integral form)

\[
H(S_t - B_t, t) = H(0, 0) + \left[\int_0^t \frac{\partial}{\partial u} H(X_u, u) \, du + \int_0^t \frac{\partial^2}{\partial x^2} H(X_u, u) \, du \right] - \int_0^t \frac{\partial}{\partial x} H(X_u, u) \, dB_u.
\]

Denoting the expression in the square brackets \(A_t\), we find from (49) that

\[
\mathbb{E}(S_T \mid F_t) = H(0, 0) + (A_t + B_t) - \int_0^t \frac{\partial}{\partial x} H(X_u, u) \, dB_u.
\]

Since the processes \((\mathbb{E}(S_T \mid F_t))_{t \leq T}\) and \((\int_0^t \frac{\partial}{\partial x} H(X_u, u) \, dB_u)_{t \leq T}\) are continuous martingales, the process of bounded variation \((A_t + B_t)_{t \leq T}\) with \(A_0 + B_0 = 0\) is also a martingale. Therefore, this process is identically (to stochastic indistinguishability) equal to zero, and, hence,

\[
\mathbb{E}(S_T \mid F_t) = H(0, 0) - \int_0^t \frac{\partial}{\partial x} H(X_u, u) \, dB_u,
\]

which leads, taking formulas (50) and (51) into account, to the required representation (46).

3’. The second derivation of the representation for \(S_{T-a} = \max_{t \leq T-a} B_t\).

3.1. According to relation (44) from the first part of the paper,

\[
S_{T-a} = \int_0^{T-a} \log \frac{a}{a + S_u} \, dB_u.
\]

Let us demonstrate that for every \(M > 0\) and \(t \geq 0\) the following representation holds:

\[
\mathbb{E}[S_{T-a} \wedge M \mid F_t] = a \log \frac{a + M}{a} + \int_0^{t \wedge T-a} \log \frac{a + M}{a + M \wedge S_u} \, dB_u,
\]

whence (52) is derived by transition to the limit, as shown in what follows.

For fixed \(M > 0\)

\[
\mathbb{E}[S_{T-a} \wedge M \mid F_t] = \mathbb{E} \left[\int_0^M I(\alpha < S_{T-a} \wedge M) \, d\alpha \bigg| F_t \right] = \int_0^M \mathbb{E}[I(\alpha < S_{T-a} \wedge M) \mid F_t] \, d\alpha = \int_0^M \mathbb{E}[I(T_\alpha < T-a) \mid F_t] \, d\alpha + \int_0^M \left(I(T_\alpha < T-a) + \mathbb{E}[I(t < T_\alpha < T-a) \mid F_t] \right) \, d\alpha.
\]
Due to the Markov property of the Brownian motion we find that on the set \(\{ t < T_{-a} \} \)

\[
\begin{align*}
\mathbb{E}[S_{T_{-a}} \wedge M \mid \mathcal{F}_t] &= \int_0^M I(T_{-a} \leq t) \, d\alpha + \int_0^M \mathbb{E}[I(t < T_{-a}) \mid \mathcal{F}_t] \, d\alpha \\
&= \int_0^M I(\alpha < S_t) \, d\alpha \\
&\quad + \int_0^M \mathbb{E}[I(t < T_{-a}) I(0 < T_{-a} \circ \theta_t < T_{-a} \circ \theta_t) \mid \mathcal{F}_t] \, d\alpha \\
&= S_t \wedge M + \int_0^M \mathbb{P}_t \{ T_{-a} < t \} I(t < T_{-a}) \, d\alpha,
\end{align*}
\]

(55)

where \(\theta_t \) is the shift operator. Yet, on the set \(\{ T_{-a} \leq t \} \)

\[
\begin{align*}
\mathbb{E}[S_{T_{-a}} \wedge M \mid \mathcal{F}_t] &= \int_0^M I(T_{-a} < T_{-a} < t) \, d\alpha = S_{T_{-a}} \wedge M.
\end{align*}
\]

(56)

Using the well-known relation

\[
\mathbb{P}_x \{ T_{-a} < t \} = \frac{x + a}{\alpha + a}, \quad -a < x < \alpha,
\]

we find from (55) that on the set \(\{ t < T_{-a} \} \)

\[
\begin{align*}
\mathbb{E}[S_{T_{-a}} \wedge M \mid \mathcal{F}_t] &= S_t \wedge M + \int_0^M \frac{B_t + a}{\alpha + a} I(t < T_{-a}) \, d\alpha \\
&= S_t \wedge M + B_t \int_0^M \frac{1}{\alpha + a} I(S_t < \alpha) \, d\alpha + \int_0^M \frac{a}{\alpha + a} I(S_t < \alpha) \, d\alpha \\
&= S_t \wedge M + (B_t + a) \log(M + a) - B_t \log(S_t \wedge M + a) \\
&\quad - a \log(S_t \wedge M + a) = A_t + \int_0^t \log \frac{M + a}{S_u \wedge M + a} \, dB_u,
\end{align*}
\]

(57)

where \((A_t)_{t \geq 0} \) is the continuous process of bounded variation specified by the relation

\[
A_t = a \log(M + a) + S_t \wedge M - a \log(S_t \wedge M + a) - \int_0^t \frac{B_u}{S_u \wedge M + a} I(S_u \leq M) \, dS_u.
\]

(58)

(The last equality in (57) was obtained with the use of Itô’s formula applied to \(B_t \log(S_t \wedge M + a) \).)

As in the end of section 2’, we make use of the fact that a continuous martingale, which is at the same time a process of bounded variation, is constant. Then we find from (57) that the processes

\[
\left(\mathbb{E}[S_{T_{-a}} \wedge M \mid \mathcal{F}_{t \wedge T_{-a}}] \right)_{t \geq 0} \quad \text{and} \quad \left(A_0 + \int_0^{t \wedge T_{-a}} \log \frac{M + a}{S_u \wedge M + a} \, dB_u \right)_{t \geq 0}
\]

are indistinguishable.
From (58) we obtain equality $A_0 = a \log((M + a)/a)$, and, therefore, for every $t \geq 0$

$$E(S_{T-a} \land M | \mathcal{F}_t) = a \log \frac{M + a}{a} + \int_0^{t \land T-a} \log \frac{M + a}{S_u \land M + a} dB_u \quad (\mathbb{P}\text{-a.s.})$$

which is just the required relation (53).

Note that according to this formula

$$E(S_{T-a} \land M) = a \log \frac{M + a}{a}.$$

This latter formula one can also find directly:

$$E(S_{T-a} \land M) = \int_0^M P\{S_{T-a} \land M > \alpha\} \, d\alpha = \int_0^M P\{T_a < T-a\} \, d\alpha = \int_0^M \frac{a}{\alpha + a} \, d\alpha = a \log \frac{M + a}{a}.$$

If one assumes $t = T-a$ in (53), then one will find that for every $M > 0$

$$S_{T-a} \land M = a \log \frac{M + a}{a} + \int_0^{T-a} \left[\log(M + a) - \log(S_u \land M + a) \right] dB_u$$

$$= a \log \frac{M + a}{a} - a \log(M + a) - \int_0^{T-a} \log(S_u \land M + a) dB_u$$

$$= \int_0^{T-a} \left[\log a - \log(S_u \land M + a) \right] dB_u = \int_0^{T-a} \log \frac{a}{S_u \land M + a} dB_u.$$

Assuming here $M \to \infty$ and using the continuity of the integral with respect to M, we get

$$S_{T-a} = \int_0^{T-a} \log \frac{a}{a + S_u} dB_u,$$

which is just the required relation (52).

3.2. Let $T_{b,a} = T_b \land T_{-a}, a, b > 0$. In other words, let $T_{b,a} = \inf\{t > 0: B_t \notin (-a, b)\}$. The reasoning, similar to the adduced one, allows us to validate the following representations:

(59)

$$S_{T_{b,a}} = a \log \frac{a + b}{a} + \int_0^{T_{b,a}} \log \frac{b + a}{S_u + a} dB_u$$

and

(60)

$$E(S_{T_{b,a}} | \mathcal{F}_t) = a \log \frac{a + b}{a} + \int_0^{t \land T_{b,a}} \log \frac{b + a}{S_u + a} dB_u.$$

Indeed, since $P\{S_{T_{b,a}} \leq b\} = 1$ and

$$P\{S_{T_{b,a}} > u\} = P\{T_u < T_{-a}\} = \frac{a}{u + a}, \quad 0 < u \leq b,$$
one can see that
\[\mathbf{E}S_{T^b_a} = a \log \frac{b + a}{a}. \]

Fix \(t > 0 \). As in section 1 (see (54)), we have
\[\mathbf{E}[S_{T^b_{-a}} \mid \mathcal{F}_t] = \int_0^\infty \mathbf{E}[I(u < S_{T^b_{-a}}) \mid \mathcal{F}_t] \, du = \int_0^\infty \mathbf{E}[I(T_u < T^b_{-a}) \mid \mathcal{F}_t] \, du \\
= \int_0^\infty (I(T_u < T^b_{-a} \leq t) + I(T_u \leq t < T^b_{-a})) \\
+ \mathbf{E}[I(t < T_u < T^b_{-a}) \mid \mathcal{F}_t] \, du. \]

Using the Markov property of the Brownian motion, we find that
\[\mathbf{E}[I(t < T_u < T^b_{-a}) \mid \mathcal{F}_t] = \mathbf{P}\left(\exists s \in (t, T^b_{-a}): B_s > u \mid \mathcal{F}_t \right) I(t < T^b_{-a}) \\
= \mathbf{P}_{B_t}\{ \exists s \in (0, T^b_{-a}): B_s > u \} I(t < T_{-a}) \\
= \psi(B_t, u) I(t < T^b_{-a}), \]

where
\[\psi(x, u) = \begin{cases}
1, & x \geq u, \ u \in (0, b), \\
\frac{x + a}{u + a}, & -a < x < u, \ u \in (0, b), \\
0, & \text{otherwise}.
\end{cases} \]

Taking account of this designation, we find that on the set \(\{ t < T^b_{-a} \} \)
\[\mathbf{E}[S_{T^b_{-a}} \mid \mathcal{F}_t] = S_t + \int_{S_t}^b \psi(B_t, u) \, du = S_t + \int_{S_t}^b \frac{B_t + a}{u + a} \, du = S_t + (B_t + a) \log \frac{b + a}{S_t + a}. \]

Applying Itô’s formula to the right-hand side of this relation and again, as in section 1, ignoring members with bounded variation, we arrive at the following relation:
\[\mathbf{E}[S_{T^b_{-a}} \mid \mathcal{F}_t] = a \log \frac{a + b}{a} + \int_0^{t \wedge T^b_{-a}} \log \frac{b + a}{S_u + a} \, dB_u, \]

which is just the required relation (60), which obviously implies (59).

4. The case \(S_{g_T} = \max_{t \leq g_T} B_t \).

4.1. Let \(g_T = \sup\{0 < t \leq T: B_t = 0\} \) be the time of the last reaching of zero by the Brownian motion on \((0, T)\). If \(B_t \neq 0 \) for all \(0 < t \leq T \), then assume \(g_T = 0 \).

THEOREM 3. For \(S_{g_T} \) the following stochastic integral representation is true:
\begin{equation}
S_{g_T} = \frac{1}{2} \mathbf{E}S_T + \int_0^T \left[1 - \Psi \left(\frac{2S_u - B_u}{\sqrt{T - u}} \right) - Z_u(B_u, S_u - S_{g_u}) \right] \, dB_u,
\end{equation}

where \(\mathbf{E}S_T = \sqrt{2T/\pi} \), \(\Psi(x) = 2[1 - \Phi(x)] \), and
\[Z_u(B_u, S_u - S_{g_u}) = (S_u - S_{g_u}) \varphi_{T-u}(B_u) \quad \text{with} \quad g_u = \sup\{0 < t \leq u: B_t = 0\}, \]
or, equivalently,

\[
S_{gt} = \frac{1}{2} ES_T + \int_0^T \left[\frac{1}{2} \psi \left(\frac{2S_u - B_u}{\sqrt{T-u}} \right) - Z_u(B_u, S_u - S_{gu}) \right] dB_u.
\]

We give two different proofs, each of them of independent interest in view of the techniques used.

4.2. First proof. We have

\[
S_{gt} = \int_0^\infty I(a < S_{gt}) \, da = \int_0^\infty I(g_T > T_a) \, da = \int_0^\infty I(d_{T_a} < T) \, da,
\]

where for \(K > 0 \)

\[
d_K = \inf\{ t > K : B_t = 0 \}.
\]

By analogy with the scheme of the proof of Theorem 1 it is natural first to obtain a stochastic integral representation for \(I(d_{T_a} < T) \) (cf. Lemma 1, which provides the representation for \(I(T_a < T) \)).

Lemma 4. For any \(a > 0 \) and any \(T > 0 \)

\[
I(d_{T_a} < T) = P\{ T_{2a} < T \} + 2 \int_{T_a \wedge T} ^{d_{T_a} \wedge T} \varphi_{T-s} (B_s) dB_s
\]

\[
- 2 \int_0 ^{T_a \wedge T} \varphi_{T-s} (B_s - 2a) dB_s \quad (P\text{-a.s.}).
\]

Proof. It is obvious that

\[
d_{T_a} = \inf\{ t > T_a : B_t = 0 \} = T_a + \inf\{ u \geq 0 : B_{T_a + u} = 0 \}
\]

\[
= T_a + \inf\{ u \geq 0 : B_{T_a + u} - a = -a \} = T_a + \inf\{ u \geq 0 : \hat{B}_u = -a \},
\]

where \(\hat{B} = (\hat{B}_u)_{u \geq 0} \) with \(\hat{B}_u = B_{T_a + u} - a \) is the Brownian motion, independent of \(\sigma \)-algebra \(\mathcal{F}_{T_a} = \sigma\{ A \in \mathcal{F} : A \cap \{ T_a \leq t \} \in \mathcal{F}_t, t > 0 \} \) with \(\mathcal{F} = \bigvee_{t>0} \mathcal{F}_t \).

Denote \(\hat{T}_{-a} = \inf\{ u \geq 0 : \hat{B}_u = -a \} \). Then from (65) we have \(d_{T_a} = T_a + \hat{T}_{-a} \), and, hence,

\[
I(d_{T_a} < T) = I(\hat{T}_{-a} < T - T_a).
\]

Let us find a representation for \(I(\hat{T}_{-a} < b) \). If one denotes \(\hat{T}_{-a} = \hat{T}_{-a}(\hat{B}) \), then one can see that \(\hat{T}_{-a}(\hat{B}) = \hat{T}_a(-\hat{B}) \). According to Lemma 1,

\[
I(\hat{T}_a(-\hat{B}) < b) = P\{ \hat{T}_a(-\hat{B}) < b \} + 2 \int_0 ^{\hat{T}_a(-\hat{B}) \wedge b} \varphi_{\hat{B}_u - u} (\hat{B}_u - a) d(\hat{B}_u)
\]

\[
= P\{ T_a < b \} - 2 \int_0 ^{\hat{T}_{-a} \wedge b} \varphi_{\hat{B}_u - u} (\hat{B}_u + a) d\hat{B}_u.
\]

By (14) and (15)

\[
P\{ T_a < b \} = \int_0 ^\infty I(t < b) \gamma_a(t) \, dt \quad \text{with} \quad \gamma_a(t) = \frac{a}{\sqrt{2\pi t^3}} e^{-a^2/(2t)}.
\]
Therefore,

\[(70) \quad \mathbb{E} \bigr|_{S_{\infty}} \leq \int_0^\infty \int_0^{T_{a}} \gamma(t) \, dt - \int_0^{T_{a}} \gamma(t) \, dt \, d\mathbb{P}_{T_{a}} + \int_0^{T_{a}} \gamma(t) \, dt \, d\mathbb{P}_{T_{a}}.
\]

Using the independence of \(T_{a} \) from \(\sigma \)-algebra \(\mathcal{F}_{T_{a}} \), we find from (67) that

\[
\begin{align*}
\int_0^{T_{a}} \gamma(t) \, dt &= \int_0^{T_{a}} \gamma(t) \, dt - \int_0^{T_{a}} \gamma(t) \, dt \\
&= \int_0^{T_{a}} \gamma(t) \, dt - \int_0^{T_{a}} \gamma(t) \, dt \\
&= \int_0^{T_{a}} \gamma(t) \, dt - \int_0^{T_{a}} \gamma(t) \, dt.
\end{align*}
\]

From this, (67), (66), and (6) we obtain

\[
\begin{align*}
I(d_{T_{a}} < T) &= \int_0^{T_{a}} \gamma(t) \, dt - \int_0^{T_{a}} \gamma(t) \, dt \\
&= \int_0^{T_{a}} \gamma(t) \, dt - \int_0^{T_{a}} \gamma(t) \, dt.
\end{align*}
\]

According to Lemma 5, mentioned below in section 3, for all \(s < T_{a} \) such that \(B_{s} < a \), the following equality holds:

\[
(69) \quad \int_0^{T_{a}} \gamma(t) \, dt = \int_0^{T_{a}} \gamma(t) \, dt = \int_0^{T_{a}} \gamma(t) \, dt.
\]

Hence, it follows from (68) that

\[
\begin{align*}
I(d_{T_{a}} < T) &= \mathbb{P}(T_{2a} < T) + 2 \int_0^{T_{a}} \gamma(t) \, dt - \int_0^{T_{a}} \gamma(t) \, dt \\
&= \mathbb{P}(T_{2a} < T) + 2 \int_0^{T_{a}} \gamma(t) \, dt - \int_0^{T_{a}} \gamma(t) \, dt.
\end{align*}
\]

which is just the required relation (64). This proves Lemma 4.

Now we turn to proving representation (61).

By virtue of (63) and (64)

\[
\begin{align*}
S_{\infty} &= \int_0^{\infty} I(d_{T_{a}} < T) \, da \\
&= \int_0^{\infty} \mathbb{P}(T_{2a} < T) \, da + 2 \int_0^{\infty} \int_0^{T_{a}} \gamma(t) \, dt - \int_0^{T_{a}} \gamma(t) \, dt \, d\mathbb{P}_{T_{a}} + \int_0^{T_{a}} \gamma(t) \, dt \, d\mathbb{P}_{T_{a}} \\
&= \int_0^{\infty} \mathbb{P}(T_{2a} < T) \, da + 2 \int_0^{\infty} \int_0^{T_{a}} \gamma(t) \, dt - \int_0^{T_{a}} \gamma(t) \, dt \, d\mathbb{P}_{T_{a}} + \int_0^{T_{a}} \gamma(t) \, dt \, d\mathbb{P}_{T_{a}}
\end{align*}
\]
Here

\[
\int_{0}^{\infty} P\{T_{2a} < T\} \, da = \frac{1}{2} \int_{0}^{\infty} P\{T_{b} < T\} \, db = \frac{1}{2} \int_{0}^{\infty} P\{S_{T} > b\} \, db = \frac{1}{2} ES_{T}
\]

and

\[
\int_{0}^{\infty} \left[\int_{0}^{T_{a \wedge T}} \varphi_{T-s}(B_{s} - 2a) \, dB_{s} \right] \, da = \int_{0}^{T} \left[\int_{0}^{\infty} \varphi_{T-u}(B_{u} - 2a) I(S_{u} < a) \, da \right] \, dB_{u} = \int_{0}^{T} \left[\int_{0}^{S_{u}} \varphi_{T-u}(B_{u} - 2a) \, da \right] \, dB_{u} = \frac{1}{2} \int_{0}^{T} \left[\int_{2S_{u}}^{\infty} \varphi_{T-u}(B_{u} - b) \, db \right] \, dB_{u}
\]

\[
\int_{0}^{\infty} \left[\int_{0}^{T_{a \wedge T}} \varphi_{T-s}(B_{s} - 2a) \, dB_{s} \right] \, da = \int_{0}^{T_{0}} \left[\int_{0}^{\infty} \varphi_{T-s}(B_{s} - 2a) \, dB_{s} \right] \, da = \frac{1}{2} \int_{0}^{T_{0}} \left[\int_{0}^{\infty} \varphi_{T-s}(B_{s} - 2a) \, dB_{s} \right] \, da = \frac{1}{2} \int_{0}^{T_{0}} \left[\int_{0}^{\infty} \varphi_{T-s}(B_{s} - 2a) \, dB_{s} \right] \, da
\]

\[
\int_{0}^{\infty} \left[\int_{0}^{T_{a \wedge T}} \varphi_{T-s}(B_{s} - 2a) \, dB_{s} \right] \, da = \int_{0}^{T} \left[\int_{0}^{\infty} \varphi_{T-u}(B_{u} - 2a) I(S_{u} < a) \, da \right] \, dB_{u} = \int_{0}^{T} \left[\int_{0}^{S_{u}} \varphi_{T-u}(B_{u} - 2a) \, da \right] \, dB_{u} = \frac{1}{2} \int_{0}^{T} \left[\int_{2S_{u}}^{\infty} \varphi_{T-u}(B_{u} - b) \, db \right] \, dB_{u}
\]

\[
(71)
\]

Finally, let us transform the last expression in the right-hand side of (70).

We have

\[
\int_{0}^{\infty} \left[\int_{0}^{T_{a \wedge T}} \varphi_{T-s}(B_{s} - 2a) \, dB_{s} \right] \, da = \int_{0}^{\infty} \left[\int_{0}^{T_{a \wedge T}} \varphi_{T-s}(B_{s} - 2a) \, dB_{s} \right] \, da = \frac{1}{2} \int_{0}^{T} \left[\int_{0}^{\infty} \varphi_{T-u}(B_{u} - 2a) I(S_{u} < a) \, da \right] \, dB_{u} = \frac{1}{2} \int_{0}^{T} \left[\int_{0}^{S_{u}} \varphi_{T-u}(B_{u} - 2a) \, da \right] \, dB_{u} = \int_{0}^{T} \left[\int_{0}^{\infty} \varphi_{T-u}(B_{u} - b) \, db \right] \, dB_{u}
\]

\[
(72)
\]

Thus, it follows from (70)–(73) that

\[
S_{gT} = \frac{1}{2} ES_{T} + \int_{0}^{T} \left[1 - \Phi\left(\frac{2S_{u} - B_{u}}{\sqrt{T - u}} \right) \right] \, dB_{u} + 2 \int_{0}^{T} (S_{u} - S_{g_{u}}) \varphi_{T-u}(B_{u}) \, dB_{u}
\]

Thereby (61) and (62) are proved.

4.3. In the above-mentioned proof, integral relation (69) linking the densities

\[
\varphi_{t}(a) = \frac{1}{\sqrt{2\pi t}} e^{-a^{2}/(2t)} \quad \text{and} \quad \gamma_{a}(t) = \frac{a}{\sqrt{2\pi t^{3}}} e^{-a^{2}/(2t)} \left(= -\frac{\partial}{\partial a} \varphi_{t}(a) \right)
\]

was used. It follows from the following lemma.

Lemma 5. For all \(a > 0 \) and \(\theta > 0 \)

\[
\int_{0}^{\theta} \gamma_{a}(t) \varphi_{\theta-t}(x - a) \, dt = \begin{cases} \varphi_{\theta}(x), & x > a, \\ \varphi_{\theta}(x - 2a), & x \leq a. \end{cases}
\]

Proof. Let

\[
I(a, x) = \frac{1}{\varphi_{\theta}(x)} \int_{0}^{\theta} \gamma_{a}(t) \varphi_{\theta-t}(x - a) \, dt.
\]
Using the above-mentioned explicit form of the functions \(\varphi_\theta(a) \) and \(\gamma_\alpha(t) \) and making the change of variables \(u = \sqrt{\theta}/t - 1 \), we find that

\[
I(a, x) = \frac{2a}{\sqrt{2\pi} t} e^{a(x-a)/\theta} \int_0^\infty e^{-a^2 - \beta/u^2} du
\]

with \(\alpha = a^2/(2\theta) \) and \(\beta = (x - a)^2/(2\theta) \).

By formula 3.325 of [2]

\[
\int_0^\infty e^{-\alpha u^2 - \beta/u^2} du = \frac{1}{2} \sqrt{\frac{\pi}{\alpha}} e^{-2\sqrt{\alpha\beta}} = \frac{\sqrt{2\pi\theta}}{2a} e^{-a|x-a|/\theta}.
\]

Therefore,

\[
I(a, x) = e^{a(x-a)/\theta} e^{-a|x-a|/\theta} = \begin{cases}
1, & x > a, \\
e^{-2a(a-x)/\theta}, & x \leq a,
\end{cases}
\]

which proves (74).

Along with the adduced “analytic” proof of (74) the following “probabilistic” proof of this relation is not without interest.

Let \(f(x) \) be a measurable bounded function. Then

\[
(75) \quad E[f(\theta)] = E[f(\theta) I(T_a < \theta)] + E[f(\theta) I(T_a \geq \theta)].
\]

Here

\[
E[f(\theta) I(T_a < \theta)] = E[f(B_{T_a+(\theta-T_a)}) I(T_a < \theta)]
\]

\[
= \int_0^\theta \gamma_a(t) \left[\int_{-\infty}^\infty f(x) \varphi_{\theta-t}(x-a) \, dx \right] \, dt
\]

and

\[
E[f(\theta) I(T_a \geq \theta)] = \int_\infty^\infty E[f(\theta) I(\theta \leq T_a) \mid B_\theta = x] \varphi_\theta(x) \, dx
\]

\[
= \int_\infty^\infty f(x) P(T_a \geq \theta \mid B_\theta = x) \varphi_\theta(x) \, dx.
\]

From (75)–(77) we obtain

\[
E[f(\theta)] = \int_{-\infty}^\infty f(x) \varphi_\theta(x) \, dx
\]

\[
= \int_{-\infty}^\infty f(x) \left[\int_0^\theta \varphi_{\theta-t}(x-a) \gamma_a(t) \, dt + P(T_a \geq \theta \mid B_\theta = x) \varphi_\theta(x) \right] \, dx.
\]

From this in view of the arbitrariness of the function \(f(x) \) we have

\[
(78) \quad \int_0^\theta \gamma_a(t) \varphi_{\theta-t}(x-a) \, dt = \varphi_\theta(x)[1 - P(T_a \geq \theta \mid B_\theta = x)].
\]

If \(x > a \), then \(P(T_a \geq \theta \mid B_\theta = x) = 0 \), and (78) gives (74).

Now let \(x \leq a \); then

\[
1 - P(T_a \geq \theta \mid B_\theta = x) = P(T_a < \theta \mid B_\theta = x) = P\left(\max_{u \leq \theta} B_u > a \mid B_\theta = x \right)
\]

\[
= P(S_\theta > a \mid B_\theta = x)
\]

with \(S_\theta = \max_{u \leq \theta} B_u \).
Probability $\mathbb{P}(S_\theta > a \mid B_\theta = x)$ can be found, using, for example, the Seshadri result (see [3]) that random variables $S_\theta(S_\theta - B_\theta)$ and B_θ are independent and

$$S_\theta(S_\theta - B_\theta) \xrightarrow{law} \frac{\theta}{2} \mathcal{E},$$

where \mathcal{E} is the standard exponentially distributed random variable ($\mathbb{P}\{\mathcal{E} > t\} = e^{-t}$, $t > 0$).

Indeed, from the stated assertions we find that for $x \leq a$, $a \geq 0$, and $b = a(a - x)$

$$\mathbb{P}(S_\theta > a \mid B_\theta = x) = \mathbb{P}(S_\theta(S_\theta - B_\theta) > b \mid B_\theta = x) = \mathbb{P}\left\{ \mathcal{E} > \frac{2b}{\theta} \right\} = e^{-2b/\theta} = e^{-2a(a-x)/\theta}.$$

Thereby, expression $1 - \mathbb{P}(T_a \geq \theta \mid B_\theta = x)$, being a part of (78), equals

$$\mathbb{P}(S_\theta > a \mid B_\theta = x) = e^{-2a(a-x)/\theta}$$

and, hence, for $x \leq a$,

$$\int_0^\theta \gamma_a(t) \varphi_{\theta-t}(x-a) \, dt = \varphi_\theta(x) e^{-2a(a-x)/\theta},$$

which is claimed in (74).

4.4. Second proof. By analogy with the distributions used in sections 2’ and 3’ let us demonstrate that for every $t > 0$ the following equality is true (\mathbb{P}-a.s.):

$$\mathbb{E}[S_\theta \mid \mathcal{F}_t] = \frac{1}{2} \mathbb{E}S_T + \int_0^{t\wedge T} \frac{1}{2} \Psi \left(\frac{2S_u - B_u}{\sqrt{T-u}} \right) - Z_u(B_u, S_u - S_{g_u}) \, dB_u. \tag{79}$$

(Formula (61), of course, follows from this representation.)

Fix $0 \leq t < T$. Then

$$\mathbb{E}[S_\theta \mid \mathcal{F}_t] = \int_0^\infty \mathbb{E}[I(a < S_{g_T}) \mid \mathcal{F}_t] \, da = \int_0^\infty \mathbb{E}[I(T_a < g_T) \mid \mathcal{F}_t] \, da \tag{80}$$

$$= \int_0^\infty \mathbb{E}[I(T_a < g_T \leq t) + I(T_a \leq t < g_T) + I(t < T_a < g_T) \mid \mathcal{F}_t] \, da.$$

Using the Markov property of the Brownian motion, we obtain the following relations:

(a) $\mathbb{E}[I(T_a < g_T \leq t) \mid \mathcal{F}_t] = \mathbb{E}[I(T_a < g_T < t) \mid \mathcal{F}_t]$

$$= \mathbb{E}[I(T_a < g_T < t) \mid \mathcal{F}_t] I(T_a < t)$$

$$= \mathbb{P}\{\exists s_1 < s_2 < t: B_{s_1} > a, B_{s_2} < 0; B_s \neq 0 \text{ for } s \in (t, T) \mid \mathcal{F}_t\} I(T_a < t)$$

$$= \mathbb{P}(T_a + T_0 \circ \theta_{T_a} < t \text{ and } B_s \neq 0 \text{ for } s \in (t, T) \mid \mathcal{F}_t) I(T_a < t)$$

$$= \mathbb{P}_{T_a \circ \theta_{T_a}}(B_\theta \neq 0 \text{ for } s \in (0, T-t) \mid \mathcal{F}_t) I(T_a + T_0 \circ \theta_{T_a} < t)$$

$$= \mathbb{P}(T_{|B_\theta|} > 1 - t \mid \mathcal{F}_t) I(T_a + T_0 \circ \theta_{T_a} < t);$$
(b) \(E[I(T_a \leq t \leq g_T) | F_t] = E[I(T_a < t < g_T) | F_t] \)
\[
= E[I(T_a < t < g_T) | F_t] I(t > T_a)
\]
\[
= P(\exists s < t: B_s > a) \quad \text{and} \quad P(\exists s_1 \in (t, T): B_{s_1} = 0) \quad I(t > T_a)
\]
\[
= P_{B_t}\{\exists s_1 \in (0, T - t): B_{s_1} = 0\} \quad I(t > T_a)
\]
\[
= P\{T_{|B| > T - t}\} \quad I(t > T_a);
\]
(c) \(E[I(t < T_a < g_T) | F_t] \)
\[
= P(\exists s_1, s_2: t < s_1 < s_2 < T, B_{s_1} > a, B_{s_2} = 0 \mid F_t) \quad I(t < T_a)
\]
\[
= P_{B_t}\{\exists s_1, s_2: 0 < s_1 < s_2 < T - t, B_{s_1} > a, B_{s_2} = 0\} \quad I(t < T_a)
\]
\[
= P_{B_t}\{\exists s \in (0, T - t): B_s = 2a\} \quad I(t < T_a)
\]
\[
= P\{T_{2a-B_t} < T - t\} \quad I(t < T_a).
\]

From (a), (b), and (c) we get
\[
(a^*) \quad \int_0^\infty E[I(T_a < g_T \leq t) \mid F_t] \, da
\]
\[
= P\{T_{|B|} > T - t\} \int_0^\infty I(T_a + T_0 < t) \, da
\]
\[
= P\{T_{|B|} > T - t\} S_{g_t} = [1 - P\{T_{|B|} < T - t\}] S_{g_t};
\]
(b*) \(\int_0^\infty E[I(T_a < t < g_t) \mid F_t] \, da = P\{T_{|B|} < T - t\} S_t; \)
(c*) \(\int_0^\infty E[I(t < T_a < g_T) \mid F_t] \, da \)
\[
= \int_0^\infty P\{T_{2a-B_t} < T - t\} \, I(t < T_a) \, da
\]
\[
= \int_{S_t} \int_0^{T-t} \frac{2a - B_t}{\sqrt{2\pi s^3}} \exp\left\{-\frac{(2a - B_t)^2}{2s}\right\} \, ds \, da
\]
\[
= \int_0^{T-t} \int_{S_t} \frac{2a - B_t}{\sqrt{2\pi s^3}} \exp\left\{-\frac{(2a - B_t)^2}{2s}\right\} \, ds \, da
\]
\[
= \frac{1}{2} \int_0^{T-t} \frac{1}{\sqrt{2\pi s}} \exp\left\{-\frac{(2S_t - B_t)^2}{2s}\right\} \, ds
\]
\[
= \frac{1}{2} \int_0^{T-t} \varphi_s(2S_t - B_t) \, ds = \frac{1}{2} H(2S_t - B_t, t),
\]
where \(H(x, t) = \int_0^{T-t} \varphi_s(x) \, ds \) and \(0 \leq t < T. \)

Gathering relations \((a^*), (b^*), \) and \((c^*) \), we obtain
\[
E(S_{g_T} \mid F_t) = \frac{1}{2} H(2S_t - B_t, t) + P\{T_{|B|} < T - t\} (S_t - S_{g_t}) + S_{g_t},
\]
\[
(81) \quad = \frac{1}{2} H(2S_t - B_t, t) + \int_0^{T-t} \frac{|B_t|}{\sqrt{2\pi s^3}} \exp\left\{-\frac{|B_t|^2}{2s}\right\} \, ds \cdot (S_t - S_{g_t}) + S_{g_t}.
\]

Applying the Itô formula to \(H(X_t, t) \) with \(X_t = 2S_t - B_t \) (Bessel process of order 3),
we find that for $t < T$

$$H(2S_t - B_t, t) = H(0, 0) - \int_0^t \frac{\partial}{\partial x} H(X_u, u) dB_u + A_t,$$

where $(A_t)_{t < T}$ is a process of bounded variation. From this by virtue of (50) and (51) we have

$$H(2S_t - B_t, t) = \sqrt{\frac{2T}{\pi}} + \int_0^t \Psi\left(\frac{2S_u - B_u}{\sqrt{T}}\right) dB_u + A_t,$$

where $(A_t)_{t < T}$ is a continuous process of bounded variation.

Let

$$\tilde{H}(x, t) = \int_0^{T-t} \frac{x}{\sqrt{2\pi s}} e^{-x^2/(2s)} ds \left(= \Psi\left(\frac{x}{\sqrt{T-t}}\right)\right).$$

Applying the Itô–Tanaka formula to $\tilde{H}(|B_t|, t)$, we find that

$$d\tilde{H}(|B_t|, t) = \Psi\left(\frac{|B_t|}{\sqrt{T-t}}\right) + 2\varphi\left(\frac{|B_t|}{\sqrt{T-t}}\right) \frac{1}{\sqrt{T-t}} \text{sign} B_t \ dB_t + d\tilde{A}_t$$

where $(\tilde{A}_t)_{t < T}$ is a process of bounded variation.

Thus, from (81), (83)–(85) we find, neglecting members with bounded variation (cf. the reasoning in the end of section 2'), that for $t < T$,

$$\mathbb{E}[S_{gT} | \mathcal{F}_t] = \sqrt{\frac{T}{2\pi}} + \frac{1}{2} \int_0^{t\wedge T} \Psi\left(\frac{2S_u - B_u}{\sqrt{T-t}}\right) dB_u$$

$$- 2 \int_0^{t\wedge T} \varphi_{T-u}(B_u) \text{sign} B_u \cdot (S_u - S_{g_u}) dB_u.$$

Note that one can omit sign B_u here, since if sign $B_u = -1$, then $S_u - S_{g_u} = 0$. Hence,

$$\int_0^{t\wedge T} \varphi_{T-u}(B_u) \text{sign} B_u \cdot (S_u - S_{g_u}) dB_u = \int_0^{t\wedge T} \varphi_{T-u}(B_u)(S_u - S_{g_u}) dB_u.$$

The required relation (79) follows for $t < T$ from (86) and (87). In the general case (when $t \geq 0$) it is sufficient to note that $\lim_{t \uparrow T} \mathbb{E}[S_{gT} | \mathcal{F}_t] = S_{gT}$ and the limits $\lim_{t \uparrow T}$ of the integrals $\int_0^{t\wedge T} (\cdot) dB_u$ in (86) are equal to the integrals $\int_0^T (\cdot) dB_u$.

REFERENCES

