You are here: MIMS > EPrints
MIMS EPrints

2007.219: Rheology of giant micelles

2007.219: M.E. Cates and S.M. Fielding (2006) Rheology of giant micelles. Advances in Physics, 55 (7/8). pp. 799-879. ISSN 0001–8732

Full text available as:

PDF - Registered users only - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
1270 Kb

DOI: 10.1080/00018730601082029


Giant micelles are elongated, polymer-like objects created by the self-assembly of amphiphilic molecules (such as detergents) in solution. Giant micelles are typically flexible, and can become highly entangled even at modest concentrations. The resulting viscoelastic solutions show fascinating flow behaviour (rheology) which we address theoretically in this article at two levels. First, we summarize advances in understanding linear viscoelastic spectra and steady-state nonlinear flows, based on microscopic constitutive models that combine the physics of polymer entanglement with the reversible kinetics of self-assembly. Such models were first introduced two decades ago, and since then have been shown to explain robustly several distinctive features of the rheology in the strongly entangled regime, including extreme shear thinning. We then turn to more complex rheological phenomena, particularly involving spatial heterogeneity, spontaneous oscillation, instability and chaos. Recent understanding of these complex flows is based largely on grossly simplified models which capture in outline just a few pertinent microscopic features, such as coupling between stresses and other order parameters such as concentration. The role of 'structural memory' (the dependence of structural parameters such as the micellar length distribution on the flow history) in explaining these highly nonlinear phenomena is addressed. Structural memory also plays an intriguing role in the little-understood shear thickening regime, which occurs in a concentration regime close to but below the onset of strong entanglement, and which is marked by a shear-induced transformation from an inviscid to a gelatinous state.

Item Type:Article
Subjects:MSC 2000 > 74 Mechanics of deformable solids
MIMS number:2007.219
Deposited By:Ms Helen Kirkbright
Deposited On:04 December 2007

Download Statistics: last 4 weeks
Repository Staff Only: edit this item