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Abstract

The Stasheff polytopes Kn, n > 2, appeared in the
Stasheff paper “Homotopy associativity of H-spaces”
(1963) as the spaces of homotopy parameters for maps
determining associativity conditions for a product
a1...an, n > 2.

Stasheff polytopes are in the limelight of several
research areas. Nowadays they have become well-known
due to applications of operad theory in physics.

We will describe geometry and combinatorics
of Stasheff polytopes using several different
constructions of these polytopes and the methods
of toric topology.

We will show that the two-parameter generating
functionU (t, x), enumerating the number of k-dimensional
faces of the n-th Stasheff polytope, satisfies the famous
Burgers-Hopf equation Ut = UUx.

We will discuss some applications of this result
including an interpretation of the Dehn–Sommerville
relations in terms of the Cauchy problem
and the Cayley formula in terms of conservation laws.
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Homotopy associativity
(An-structure)

Take a H-space X with a multiplication
µ = µ2 : X × X → X. Then:

µ3 : K3 × X3 → X

X × X × X
µ×1

((QQQQQQQQQQQQ
1×µ

vvmmmmmmmmmmmm

X × X
µ

((QQQQQQQQQQQQQQQQ X × X
µ

vvmmmmmmmmmmmmmmmm

X

µ4 : K4 × X4 → X
X × X × X × X

))SSSSSSSSSSSSSS

²²uukkkkkkkkkkkkkk

X × X × X

))SSSSSSSSSSSSSS

wwooooooooooo
X × X × X

))SSSSSSSSSSSSSS

uukkkkkkkkkkkkkk
X × X × X

''OOOOOOOOOOO

uukkkkkkkkkkkkkk

X × X

,,XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX X × X

))SSSSSSSSSSSSSSSSSS X × X

²²

X × X

uukkkkkkkkkkkkkkkkkk
X × X

rrffffffffffffffffffffffffffffffffff

X

. . . . .

µn : Kn × Xn → X.
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In how many ways
can a product of n factors be interpreted

in a non-commutative and non-associative algebra?

n = 3

a1, a2, a3

))SSSSSSSSSSSSSS

uukkkkkkkkkkkkkk

a1, a2 · a3

²²

a1 · a2, a3

²²

a1 · (a2 · a3) (a1 · a2) · a3

n = 4

a, b, c, d

((PPPPPPPPPPPP

²²wwooooooooooo

ab, c, d

''OOOOOOOOOOOO

wwooooooooooo
a, bc, d

((PPPPPPPPPPPP

wwooooooooooo
a, b, cd

((PPPPPPPPPPPP

vvnnnnnnnnnnnn

(ab)c, d

²²

a(bc), d

²²

ab, cd

²²

a, (bc)d

²²

a, b(cd)

²²

((ab)c)d (a(bc))d (ab)(cd) a · ((bc)d) a(b(cd))
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We will use four equivalent ways to describe the Stash-
eff polytope Kn:

bracketing, polygon dissection, plane trees and
intervals.

The language of brackets

Definition. The set Γi, 0 6 i < n− 2, of i-dimensional
faces of the Stasheff polytope Kn of dimension n− 2
is the set of correct bracketings of the monomial
a1 · . . . · an with n− 2− i pairs of brackets. The outer
pair of brackets (a1 · . . . · an) is not taken into account.

The incidence relation is defined as follows.
Let γ ∈ Γk and δ ∈ Γl, where k > l. The cell δ lies
at the boundary of the cell γ (i.e., δ ⊂ ∂γ geometrically)
if γ ⊂ δ (as bracketings).
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The set of 0-dimensional faces of the polytope Kn,
i.e., the set of its vertices, is the set of correct
bracketings of the monomial a1, . . . , an with n− 2 pairs
of brackets.

The number of such bracketings is equal to the Catalan
number Cn−1 = 1

n

(
2n−2
n−1

)
.

This is one possible definition of the Catalan numbers.

For example: C2 = 2, C3 = 5, C4 = 14.

Two vertices in Kn are joined by an edge if and
only if the bracketing corresponding to one vertex
can be obtained from the bracketing corresponding
to the other vertex by deleting a pair of brackets and
inserting, in a unique way, another pair of brackets
different from the deleted one.

For example, in the case K3:

s

s

(a1a2)a3

a1(a2a3)
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The language of diagonals

Definition. Consider a convex (n + 1)-gon Gn.
The set Γi, 0 6 i < n− 2, of i-dimensional faces
of the Stasheff polytope Kn of dimension n− 2 is
the set of all distinct sets of n− i− 2 disjoint diagonals
of Gn. (That is, each face of Kn is associated with
a set of disjoint diagonals of Gn, and vice versa.)

The incidence relation is defined in the same way
as in the preceding definition. Let γ ∈ Γk and δ ∈ Γl,
where k > l. The cell δ lies at the boundary of γ

(i.e., δ ⊂ ∂γ geometrically) if γ ⊂ δ (as sets of
diagonals).

Corollary. The dihedral group Dn+1 of symmetries
of a regular (n + 1)-gon Gn is the transformation group
of the Stasheff polytope Kn.
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Thus, the number of triangulation of (n + 1)-gon Gn
is equal to the Catalan number Cn−1.

The problem to find the number of triangulation of
(n + 1)-gon Gn is known as

Euler’s polygon division problem.

Euler proposed it to C.Goldbach in 1751.
In 1758 Segner gave the solution of this problem
by recurrence formula:

En = E2En−1 + E3En−2 + · · · + En−1E2, n > 3,

with E1 = E2 = E3 = 1 and Cn−2 = En.

The sequence {Cn} is named in honour of E. Catalan,
who discovered the connection to bracketings of
monomials in 1844.

The number of diagonals

(n− 2)(n + 1)

2
=

(n + 1

2

)
− (n + 1)

of Gn is equal to the number of (n−3)-dimensional faces
(facets) of Kn.
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The connection between bracketing and plane trees
was known to A. Cayley (see [∗])

The Stasheff polytope K3

t

t

t t t

t

t

t t t

t

t t t

t

t

(a1a2)a3

a1(a2a3)

a1a2a3

The languages: diagonals, brackets and plane trees.

∗A.Cayley, On the analytical form called trees, Part II, Philos. Mag.
(4) 18,1859,374–378.
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The Stasheff polytope K4.

(a1 · a2) · (a3 · a4)

((a1 · a2) · a3) · a4

(a1 · (a2 · a3)) · a4

a1 · ((a2 · a3) · a4) a1 · (a2 · (a3 · a4))

(a1 · a2) · a3 · a4(a1 · a2 · a3) · a4

a1 · (a2 · a3) · a4

a1 · (a2 · a3 · a4)

a1 · a2 · (a3 · a4)

The languages: correct bracketings and disjoint diagonals.
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The Stasheff polytope K4.
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The language of plane trees.
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The language of intervals.

To each pair of brackets of the form

a1 · · · ai(ai+1 · · · ai+l+1)ai+l+2 · · · an+1

we assign the interval Ii,l = [i+1, · · · , i+l] ⊂ [1, · · · , n],
where 0 6 i 6 n− l and 1 6 l 6 n− 1.

For example:
K3

(a1 · a2) · a3 −→ I0,1, a1 · (a2 · a3) −→ I1,1.

K4

(a1 · a2 · a3) · a4 → I0,2, a1 · (a2 · a3) · a4 → I1,1,

a1 · (a2 · a3 · a4) → I1,2, a1 · a2 · (a3 · a4) → I2,1,

(a1 · a2) · a3 · a4 → I0,1.
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A realization of the Stasheff polytope Kn+1
as a simple polytope in Rn

with integer vertices lying in a hyperplane

Consider the formal monomial a1 · . . . · an+1.

Let us label all multiplication signs “·” in this monomial
from left to right with the numbers 1, 2, . . ., n, so that
the i-th multiplication sign, 1 6 i 6 n, is between
ai and ai+1, i.e.

a1
1· a2 · · · ai

i· ai+1 · · · an
n· an+1.

To each correct bracketing of this monomial with n − 1
pairs of brackets, we assign the n-dimensional vector
M = (m1, . . . ,mn) whose coordinates mi are defined
as follows:

each multiplication sign stands for the multiplication
of two smaller monomials. Set mi = liri, where li
and ri are the lengths of the right and left monomials
corresponding to the i-th multiplication sign.
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For example, in the case n = 3, the bracketing

a1
1· ((a2

2· a3)
3· a4)

gives rise to the vector (3, 1, 2),
because m1 = 1 · 3, m2 = 1 · 1, and m3 = 2 · 1;
and the bracketing (a1 · a2) · (a3 · a4) gives rise to the
vector (1, 4, 1).

This defines a mapping of the set of vertices of the
(n − 1)-dimensional Stasheff polytope Kn+1 into Rn.
Extending it by linearity, we obtain a mapping

M : Kn+1 → Rn.

For example,

M : K3 → R2.

M
(
(a1 · a2) · a3

)
= (1, 2), M

(
a1 · (a2 · a3)

)
= (2, 1).
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Let 0 6 i 6 n− l, 1 6 l 6 n− 1.
Take the linear function pi,l : Rn → R, where

p0,l(x) =
1

l
(x1 + · · · + xl)−

1

n− l
(xl+1 + · · · + xn)

pl,n−l(x) = −p0,l(x), 1 6 l 6 n− 1,

and for 0 < i < n− l, 1 6 l 6 n− 2

pi,l(x) =
1

l
(xi+1 + · · · + xi+l)−

− 1

n− l
(x1 + · · · + xi + xi+l+1 + · · · + xn).

Set

Li,l = {x ∈ Rn : pi,l(x) + 1
2n > 0}.
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Theorem 1. The mapping M : Kn+1 → Rn is
an embedding. Its image is the intersection
of the hyperplane

H = {x ∈ Rn :
1

n
(x1 + · · · + xn) =

n + 1

2
}

with the half-spaces Li,l, 0 6 i 6 n− l, 1 6 l 6 n−1.

For each vertex of Kn+1, its image lies in the
intersection of the n− 1 half-spaces Li,l determined
by the pairs of brackets occurring in the correct
bracketing corresponding to this vertex.

This result is a some improvement of the main result of
J.-L. Loday (see [∗]), who used the language of plane
binary trees.

Set
B = {x ∈ Rn : −n

2 6 p0,l(x) 6 n
2, l = 1, . . . , n− 1}.

Corollary.
The image of Kn+1 in Rn is the intersection
of the (n− 1)dimensional cube H ∩ B with the half
spaces Li,l, where 0 < i < n− l, 0 < l < n− 1.
Thus, Kn+1 is a truncated (n−1)-dimensional cube with(
n−1
2

)
truncations.

∗J.-L. Loday, Realization of the Stasheff polytope., Arch. Math.
v. 83, Issue 3, 2004, 267–278.
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The Stasheff polytope K3

(a1 · a2) · a3 −→ I0,1, a1 · (a2 · a3) −→ I1,1

p0,1(x) = x1 − x2 = −p1,1(x)

B = {x ∈ R2 : −1 6 p0,1(x) 6 1}
H = {x ∈ R2 : x1 + x2 = 3}

K3 ' H ∩ B
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The Stasheff polytope K4

p0,1(x) = x1 −
1

2
(x2 + x3) = −p1,2(x)

p0,2(x) =
1

2
(x1 + x2)− x3 = −p2,1(x)

p1,1(x) = x2 −
1

2
(x1 + x3)

Li,l = {x ∈ R3 : pi,l(x) + 3
2 > 0}

H = {x ∈ R3 :
1

2
(x1 + x2 + x3) = 2}

B
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B
B

B
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(2, 1)

(0, 1)

(0, 2)
(1, 1)

(1, 2)

¡
¡ª

y1 = 2p0,l(x) + 3 y2 = 2p2,l(x) + 3
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Any vertex vq ∈ Kn+1, q = 1, . . . , 1
n+1

(
2n
n

)
= Cn gives

a set {Ii,l, (i, l) ∈ s(q)} of intervals determined
by the pairs of brackets occurring in the bracketing
corresponding to this vertex vq. Take

Li,l = {y ∈ Rn−1 : (i + l)yi+l − iyi + il > 0}
for 0 6 i 6 n− l, 1 6 l 6 n− 1, and

In−1 = {y ∈ Rn−1 : 0 6 yl 6 n− l, 1 6 l 6 n− 1}.

Theorem. There is an embedding

M : Kn+1 −→ Rn−1

with the image

{y ∈ In−1 : y ∈ Li,l, 0 < i < n− l, 0 < l < n− 1}.
For each vertex vq ∈ Kn+1 we have

M (vq) = ∩
(i,l)∈s(q)

Li,l.

For example, K3 ' I 1, K4 ' I 2 ∩L1,1.
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The Stasheff polytope K5

a1 · a2 · a3 · a4 · a5

We have 9 pairs of brackets

(a1·a2) → I0,1; (a2·a3) → I1,1; (a3·a4) → I2,1; (a4·a5) → I3,1;

(a1·a2·a3) → I0,2; (a2·a3·a4) → I1,2; (a3·a4·a5) → I2,2;

(a1 · a2 · a3 · a4) → I0,3; (a2 · a3 · a4 · a5) → I1,3.
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K5 ' I3 ∩L1,1 ∩L1,2 ∩L2,1.
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Definition. A polytope P of dimension n is said to be
simple if every vertex of P is the intersection of exactly
n facets, i.e. faces of dimension n− 1.

Proposition. The Stasheff polytopes are simple.

Theorem 1 provides an explicit description
of the (n−1) facets whose intersection is a given vertex
of the (n− 1)-dimensional polytope Kn+1.

Definition. An n-dimensional polytope P∗ is said to be
dual to P if for each i, 0 6 i 6 n− 1, there exists
an one-to-one correspondence between the i-dimensional
faces γi of P and the (n − i − 1)-dimensional faces
γ∗n−i−1 of P∗ such that the embedding γ∗n−j−1 ⊂ γ∗n−i−1
corresponds to the embedding γi ⊂ γj.
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Each pair of brackets in the monomial a1 · . . . · an+1
determines a facet of the polytope Kn+1. Thus, in terms
of the dual polytope, it corresponds to a vertex
of the polytope K∗n+1.

The number of vertex of K∗n+1 is (n−2)(n+1)
2 .

Definition. A polytope S is said to be simplicial if every
face of S is a simplex.

The dual P∗ of a simple polytope P is simplicial and vice
versa.

Proposition. The dual K∗n of a Stasheff polytope Kn
is a simplicial polytope.
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The dual polytope K∗5
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Octahedron (I 3)∗ is dual to cube I 3.
The fragment of construction K∗5 via stellar subdivision.
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Definition. A polytope P is called a flag polytope
if each set of vertices of P pairwise joined by edges
forms a simplex.

Proposition. The dual K∗n of a Stasheff polytope Kn
is a flag polytope.

Proof. To each set of k vertices of K∗n pairwise joined
by edges, there corresponds a set of k diagonals
of a convex (n + 1)-gon Gn. Since these vertices
are pairwise joined by edges, it follows that
the corresponding diagonals are disjoint.
By definition, this collection of diagonals determines
a face of Kn and hence a face of K∗n.
Since K∗n is a simplicial polytope, it follows that this face
is a simplex.

Proposition. The boundary of the polytope K∗n dual
to Kn is a triangulation of the (n−3)-dimensional sphere.
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Stanly–Reisner ring of Stasheff polytopes

Let P be a simple polytope with m facets F1, . . . , Fm.
Fix commutative ring k with unit. Let k[v1, . . . , vm] be
a polynomial graded k-algebra, deg vi = 2.

Definition. The face ring k(P) (or the Stanly–Reisner
ring) of a simple polytope P is the quotient ring

k(P) = k[v1, . . . , vm]/JP,

where JP is the ideal, generated by all square-free
monomials vi1 · vi2 · · · vis such that Fi1 ∩ · · · ∩ Fis = 0
in P, i1 < · · · < is.

Corollary. k(Kn) = k[v1, . . . , vm]/JKn
where the set {v1, . . . , vm} corresponds to the set

of diagonals {d1, . . . , dm}, m = (n−2)(n+1)
2 of a convex

(n + 1)-gon Gn and JKn is the ideal generated by all
monomials vivj, i 6= j, such that di ∩ dj 6= ∅ in Gn.
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Example. k(K3) = k[v1, v2]/(v1v2).
Corollary. A generator in JKn coresponds to a set
of four vertex in a convex (n + 1)-gon Gn, that is
the number of generators δ in JKn, n > 3, is

(
n+1
4

)
.

For example:

n = 4 : m = 5, δ = 5
n = 5 : m = 9, δ = 15

Let k[Dn+1] be the group ring over k of the dihedral
group Dn+1.

Corollary. The face ring k(Kn) is a k[Dn+1]-module.

Examples.

k(K3) = k[v, τv]/(v · τv),
where τ is a generator in Z2.

k(K4) = k[τiv, i = 0, . . . , 4]/(τiw, i = 0, . . . , 4),

where τ is a generator in Z5 and w = v · v.
k(K5) = k[τiv1, i = 0, . . . , 5, τiv2, i = 0, 1, 2]/JK5

,

where τ is a generator in Z6,

JK5
= (τiwj, i = 0, . . . , 5, j = 1, 2, τiw3, i = 0, 1, 2),

and w1 = v1 · τv1, w2 = v1 · v2, w3 = v2 · τv2.
26



Definition. Let S be a simplicial n-dimensional
polytope. Let fi be the number of its i-dimensional
faces. The integer vector f (S) = (f0, . . . , fn−1) is called
the f -vector of S. For convenience, we set f−1 = 1.

The f -vector of a simple polytope P is, by definition,
the f -vector of the dual simplicial polytope P∗.

We denote the number fk−1(K∗n) of (n−k−2)-dimensional
faces of the Stasheff polytope Kn by uk,n.

Set U (t, x) =
∑
n,k uk,ntkxn, 0 6 k 6 n− 2, where

u0,n = 1 for n > 2 and u0,n = 0 for n = 0, 1.
Note that un−2,n = Cn−1.

Theorem. The function U is a solution of the Burgers–
Hopf equation

Ut = UUx

with the initial condition U (0, x) = x2

1−x.

27



Recursion formula for the numbers uk,n are a crucial
part of the proof of this theorem.

Lemma. The numbers uk,n satisfy the recursion formula

kuk,n =
∑

i+j=k−1

∑

p+q=n+1
pui,puj,q, 0 ≤ k ≤ n− 2,

where u0,n = 1 for n ≥ 2 and u0,n = 0 for n = 0, 1.

Proof. Assume that we have drawn k nonintersecting
diagonals in an (n + 1)-gon. Each of these diagonals
dissects the (n+ 1)-gon into two smaller ones, in which
a total of another k− 1 diagonals are drawn.

The number of ways to dissect an (n + 1)-gon into two
smaller (p+ 1)- and (q+ 1)-gons is equal to n+ 1 in all
cases except when p = q = (n+ 1)/2, where it is equal
to (n + 1)/2.

Note that each way to draw k diagonals is counted
exactly k times.
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The transformation (t̃, x̃) = (αt + β,αx + γ) preserves
the form of the Burgers–Hopf equation.
This transformation takes the solution U (t, x) with
the initial conditionU (0, x) = ϕ(x) to the solution Ũ (t, x)
with the initial condition Ũ (0, x) = ϕ̃(x) = U (β,αx+γ).

Proposition. The relation U (0, x) = U (−1,−x)
follows from the formula for the Euler characteristic
of the sphere.

Proof. Since U (0, x) = x2/(1− x), it follows that
the condition U (0, x) = U (−1,−x) is equivalent to
the condition

1 = (−1)n
n−2∑

k=0
(−1)kuk,n for each n ≥ 2.

We have uk,n = fk−1(Kn) with f−1(Kn) = 1; hence

(−1)n =
n−2∑

k=0
(−1)kfk−1(Kn) = 1− χ(∂Kn).

Therefore, χ(∂Kn) = 1 + (−1)n−3.
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In the theory of quasilinear equations, there is an analog
of the existence and uniqueness theorem for the Cauchy
problem for the case in which the initial condition
is not characteristic. This is the case in our setting.

Using Proposition, we see that the solution
of the Burgers–Hopf equation with the given initial
condition has the symmetry

U (t, x) = U (−(t + 1),−x).

For simple polytopes, the formula for the Euler
characteristic admits a generalization in the form
of Dehn–Sommerville relations. In terms of the f -vector
of an n-dimensional polytope P, they can be written
as follows:

fk−1 =
n∑

j=k
(−1)n−j

(j
k

)
fj−1, k = 0, 1, . . . , n.
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The Dehn–Sommerville relations have the form

hi = hn−i, i = 0, 1, . . . , n,

where hi are the coordinates of the h-vector defined
in the following way.

Definition. Let f0, . . . , fn−1 be the coordinates
of the f -vector of an n-dimensional polytope P.
Then the integer vector h(P) = (h0, . . . , hn), where hi
are determined by the equation

h0t
n+· · ·+hn−1t+hn = (t−1)n+f0(t−1)n−1+· · ·+fn−1,

is called the h-vector of P.

Proposition. The Dehn–Sommerville relations are
equivalent to the symmetry U (t, x) = U (−(t + 1),−x)
of the solution of the Burgers–Hopf equation.
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Proof. Set h(t) =
∑
hitn−i. Then the Dehn–Sommerville

relations can be rewritten in the form

h(t) = tnh(1/t).

Returning to the f -vectors, we obtain

n∑

0
fi−1(t − 1)n−i = tn

n∑

0
fi−1

(1

t
− 1

)n−i

⇐⇒
∑

fi−1(t − 1)n−i =
∑

fi−1t
i(1− t)n−i

⇐⇒
∑

fi−1

( 1

t − 1

)i
= (−1)n

∑
fi−1

( t
1− t

)i
.

Since 1/(t − 1) = −(1 + t/(1− t)), we see, by setting
τ = 1/(t − 1), that the last equation is equivalent to

∑

k
uk,nτ

k = (−1)n
∑

k
uk,n(−(τ + 1))k,

as desired.
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Quasilinear Burgers–Hopf Equation

The Hopf equation (Eberhard F.Hopf, 1902–1983)
is the equation

Ut + f (U )Ux = 0.

The Hopf equation with f (U ) = U is a limit case
of the following equations:

Ut +UUx = µUxx (the Burgers equation),

Ut +UUx = εUxxx (the Korteweg–de Vries equation).

The Burgers equation (Johannes M.Burgers, 1895–1981)
occurs in various areas of applied mathematics
(fluid and gas dynamics, acoustics, traffic flow). It used
for describing of wave processes with velocity u and
viscosity coefficient µ. The case µ = 0 is a prototype
of equations whose solution can develop discontinuities
(shock waves).

K-d-V equation (Diederik J.Korteweg, 1848–1941 and
Hugo M. de Vries, 1848–1935) was introduced
as equation for the long waves over water (in 1895).
It appears also in plasma physics. Today K-d-V equation
is a most famous equation in soliton theory.
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It follows from the theory of partial differential equations
that the quasilinear Hopf equation

Ut + f (U )Ux = 0

with the initial condition U (0, x) = ϕ(x) has
the solution U = ϕ(ξ), where ξ = ξ(t, x) is determined
by the relation x = ξ + f (ϕ(ξ))t.

We consider only the case f (U ) = −U and refer to
the corresponding equation Ut = UUx as the Burgers–
Hopf equation. The transformation t → −t takes
this equation to the equation Ut +UUx = 0.

For the initial condition ϕ(x) = x2/(1 − x), the function
ξ(t, x) is given by the quadratic equation

(t + 1)ξ2 − (1 + x)ξ + x = 0.

By solving this equation, we obtain a closed-form
expression for the solution of the Cauchy problem
in a neighborhood of the point (0, 0):

U (t, x) = ξ2

1−ξ, where ξ = 2x
x+1+

√
(x+1)2−4(t+1)x

.
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For a general initial condition, the relation x = ξ−ϕ(ξ)t
implies that

ϕ(ξ) =
1

t
(ξ− x).

Thus, ξ(t, x) = tU (t, x) + x; i.e., we can eliminate
the function ξ(t, x) from the equation U = ϕ(ξ).

Corollary. The solution of the equation Ut = UUx
with U (0, x) = ϕ(x) is a solution of the functional
equation (equation on the characteristics)

U = ϕ(x + tU ).

In particular, if ϕ(x) is a rational function, then U (t, x)
satisfies an algebraic functional equation of the form

n∑

k=0
ak(t, x)U

k = 0,

where ak(t, x) are polynomials in t and x.
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In our case, ϕ(x) = x2/(1− x), and the function U (t, x)
satisfies the equation

t(1 + t)U2 + (2xt + x − 1)U + x2 = 0.

It can readily be seen from this equation that U has
the symmetry

U (t, x) = U (−(t + 1),−x).

Let us treat ξ(t, x) as a function of x with parameter t.
Then it is the inverse of the function x−ϕ(x)t. Hence we
can apply the classical Lagrange formula for computing
the inverse function:

ξ(t, x) =
1

2πi

∫

|z|=ε
− ln

(
1− x

z

(
1− ϕ(z)

z
t
)−1)

dz =

=
∑ xn

n

[(
1− ϕ(z)

z
t
)−n]

n−1
,

where [γ(z)]k is the coefficient of zk in the series γ(z).
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By substituting the initial condition ϕ(x) = x2/(1 − x)
into this formula, we obtain

ξ(t, x) =
∑

n≥1

xn

n

[(
1 +

tz
1− (t + 1)z

)n]

n−1
.

Hence

U (t, x) =
∑

n≥2
Vn(t)xn,

where

Vn(t) =
1

n

n−2∑

l=0

( n
l + 1

)(n− 2

l

)
tl(1 + t)n−2−l.

Note that this formula readily implies the identity

U (t, x) = U (−(t + 1),−x).
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Moreover, if we use the identity

k∑

l=0

( n
l + 1

)(k
l

)
=

(n + k
k + 1

)
, 0 ≤ k ≤ n− 2,

then this formula for Vn(t) implies the classical result

fk−1(Kn) =
1

n

(n− 2

k

)(n + k
k + 1

)
, 0 ≤ k ≤ n− 2.

Here fk−1(Kn) is the number of (n− k− 2)-dimensional
faces of the Stasheff polytope Kn.
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Another way to obtain the solution is to consider
conservation laws.
Let U (t, x) be the solution of the Cauchy problem
for the Burgers–Hopf equation

Ut = UUx, U (0, x) = ϕ(x).

This equation has the conservation laws
(Uk+1

k + 1

)

x
=

(Uk

k

)

t
, k = 1, 2, . . . .

Hence for any k and l, 1 ≤ k ≤ l, l = 1, 2, . . . ,
we have

dk

dxk

(U l+1

l + 1

)
=

dk−1

dxk−1

(U l

l

)

t
=

dk

dtk

( U l−k+1

l − k + 1

)
.
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Let us define Uk(x) as the coefficient of tk

in the expansion

U (t, x) =
∑

n

∑

k
uk,nt

kxn =
∑

Uk(x)t
k.

Then

dk

dtk
U

∣∣∣∣
t=0

= k!Uk(x) =
dk

dxk

(Uk+1
0 (x)
k + 1

)

for l = k. Therefore,

Uk(x) =
1

(k + 1)!

dk

dxk
ϕk+1(x).

By using the binomial expansion

(1−x)−(k+1) = 1+(k+1)x+· · ·+(k + l) · · · (k + 1)

l!
xl+· · · ,

we obtain

uk,n =
1

n

(n− 2

k

)(n + k
k + 1

)
= fk−1(Kn).
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Thus, we have computed the number

fk−1(Kn), n > 3, 1 6 k < n− 2

with the help of conservation laws for the Burgers–Hopf
equation.

The first computation of this number we can find
in the Cayley’s paper (1891), where he also used
the function Uk(x).
Note that Cayley (Arthur Cayley, 1821–1895) obtained
the above form of Uk(x) by using the recursion formula

f (k, n) =
n
2k

∑

l+m=n+2

∑

i+j=k−1
f (i, l)f (j,m),

where f (k, n) = uk,n−1 = fk−1(Kn−1).
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